mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
197 lines
6.8 KiB
Python
197 lines
6.8 KiB
Python
# This script is used to estimate an accuracy of different face detection models.
|
|
# COCO evaluation tool is used to compute an accuracy metrics (Average Precision).
|
|
# Script works with different face detection datasets.
|
|
import os
|
|
import json
|
|
from fnmatch import fnmatch
|
|
from math import pi
|
|
import cv2 as cv
|
|
import argparse
|
|
import os
|
|
import sys
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description='Evaluate OpenCV face detection algorithms '
|
|
'using COCO evaluation tool, http://cocodataset.org/#detections-eval')
|
|
parser.add_argument('--proto', help='Path to .prototxt of Caffe model or .pbtxt of TensorFlow graph')
|
|
parser.add_argument('--model', help='Path to .caffemodel trained in Caffe or .pb from TensorFlow')
|
|
parser.add_argument('--cascade', help='Optional path to trained Haar cascade as '
|
|
'an additional model for evaluation')
|
|
parser.add_argument('--ann', help='Path to text file with ground truth annotations')
|
|
parser.add_argument('--pics', help='Path to images root directory')
|
|
parser.add_argument('--fddb', help='Evaluate FDDB dataset, http://vis-www.cs.umass.edu/fddb/', action='store_true')
|
|
parser.add_argument('--wider', help='Evaluate WIDER FACE dataset, http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/', action='store_true')
|
|
args = parser.parse_args()
|
|
|
|
dataset = {}
|
|
dataset['images'] = []
|
|
dataset['categories'] = [{ 'id': 0, 'name': 'face' }]
|
|
dataset['annotations'] = []
|
|
|
|
def ellipse2Rect(params):
|
|
rad_x = params[0]
|
|
rad_y = params[1]
|
|
angle = params[2] * 180.0 / pi
|
|
center_x = params[3]
|
|
center_y = params[4]
|
|
pts = cv.ellipse2Poly((int(center_x), int(center_y)), (int(rad_x), int(rad_y)),
|
|
int(angle), 0, 360, 10)
|
|
rect = cv.boundingRect(pts)
|
|
left = rect[0]
|
|
top = rect[1]
|
|
right = rect[0] + rect[2]
|
|
bottom = rect[1] + rect[3]
|
|
return left, top, right, bottom
|
|
|
|
def addImage(imagePath):
|
|
assert('images' in dataset)
|
|
imageId = len(dataset['images'])
|
|
dataset['images'].append({
|
|
'id': int(imageId),
|
|
'file_name': imagePath
|
|
})
|
|
return imageId
|
|
|
|
def addBBox(imageId, left, top, width, height):
|
|
assert('annotations' in dataset)
|
|
dataset['annotations'].append({
|
|
'id': len(dataset['annotations']),
|
|
'image_id': int(imageId),
|
|
'category_id': 0, # Face
|
|
'bbox': [int(left), int(top), int(width), int(height)],
|
|
'iscrowd': 0,
|
|
'area': float(width * height)
|
|
})
|
|
|
|
def addDetection(detections, imageId, left, top, width, height, score):
|
|
detections.append({
|
|
'image_id': int(imageId),
|
|
'category_id': 0, # Face
|
|
'bbox': [int(left), int(top), int(width), int(height)],
|
|
'score': float(score)
|
|
})
|
|
|
|
|
|
def fddb_dataset(annotations, images):
|
|
for d in os.listdir(annotations):
|
|
if fnmatch(d, 'FDDB-fold-*-ellipseList.txt'):
|
|
with open(os.path.join(annotations, d), 'rt') as f:
|
|
lines = [line.rstrip('\n') for line in f]
|
|
lineId = 0
|
|
while lineId < len(lines):
|
|
# Image
|
|
imgPath = lines[lineId]
|
|
lineId += 1
|
|
imageId = addImage(os.path.join(images, imgPath) + '.jpg')
|
|
|
|
img = cv.imread(os.path.join(images, imgPath) + '.jpg')
|
|
|
|
# Faces
|
|
numFaces = int(lines[lineId])
|
|
lineId += 1
|
|
for i in range(numFaces):
|
|
params = [float(v) for v in lines[lineId].split()]
|
|
lineId += 1
|
|
left, top, right, bottom = ellipse2Rect(params)
|
|
addBBox(imageId, left, top, width=right - left + 1,
|
|
height=bottom - top + 1)
|
|
|
|
|
|
def wider_dataset(annotations, images):
|
|
with open(annotations, 'rt') as f:
|
|
lines = [line.rstrip('\n') for line in f]
|
|
lineId = 0
|
|
while lineId < len(lines):
|
|
# Image
|
|
imgPath = lines[lineId]
|
|
lineId += 1
|
|
imageId = addImage(os.path.join(images, imgPath))
|
|
|
|
# Faces
|
|
numFaces = int(lines[lineId])
|
|
lineId += 1
|
|
for i in range(numFaces):
|
|
params = [int(v) for v in lines[lineId].split()]
|
|
lineId += 1
|
|
left, top, width, height = params[0], params[1], params[2], params[3]
|
|
addBBox(imageId, left, top, width, height)
|
|
|
|
def evaluate():
|
|
cocoGt = COCO('annotations.json')
|
|
cocoDt = cocoGt.loadRes('detections.json')
|
|
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
|
cocoEval.evaluate()
|
|
cocoEval.accumulate()
|
|
cocoEval.summarize()
|
|
|
|
|
|
### Convert to COCO annotations format #########################################
|
|
assert(args.fddb or args.wider)
|
|
if args.fddb:
|
|
fddb_dataset(args.ann, args.pics)
|
|
elif args.wider:
|
|
wider_dataset(args.ann, args.pics)
|
|
|
|
with open('annotations.json', 'wt') as f:
|
|
json.dump(dataset, f)
|
|
|
|
### Obtain detections ##########################################################
|
|
detections = []
|
|
if args.proto and args.model:
|
|
net = cv.dnn.readNet(args.proto, args.model)
|
|
|
|
def detect(img, imageId):
|
|
imgWidth = img.shape[1]
|
|
imgHeight = img.shape[0]
|
|
net.setInput(cv.dnn.blobFromImage(img, 1.0, (300, 300), (104., 177., 123.), False, False))
|
|
out = net.forward()
|
|
|
|
for i in range(out.shape[2]):
|
|
confidence = out[0, 0, i, 2]
|
|
left = int(out[0, 0, i, 3] * img.shape[1])
|
|
top = int(out[0, 0, i, 4] * img.shape[0])
|
|
right = int(out[0, 0, i, 5] * img.shape[1])
|
|
bottom = int(out[0, 0, i, 6] * img.shape[0])
|
|
|
|
x = max(0, min(left, img.shape[1] - 1))
|
|
y = max(0, min(top, img.shape[0] - 1))
|
|
w = max(0, min(right - x + 1, img.shape[1] - x))
|
|
h = max(0, min(bottom - y + 1, img.shape[0] - y))
|
|
|
|
addDetection(detections, imageId, x, y, w, h, score=confidence)
|
|
|
|
elif args.cascade:
|
|
cascade = cv.CascadeClassifier(args.cascade)
|
|
|
|
def detect(img, imageId):
|
|
srcImgGray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
|
faces = cascade.detectMultiScale(srcImgGray)
|
|
|
|
for rect in faces:
|
|
left, top, width, height = rect[0], rect[1], rect[2], rect[3]
|
|
addDetection(detections, imageId, left, top, width, height, score=1.0)
|
|
|
|
for i in range(len(dataset['images'])):
|
|
sys.stdout.write('\r%d / %d' % (i + 1, len(dataset['images'])))
|
|
sys.stdout.flush()
|
|
|
|
img = cv.imread(dataset['images'][i]['file_name'])
|
|
imageId = int(dataset['images'][i]['id'])
|
|
|
|
detect(img, imageId)
|
|
|
|
with open('detections.json', 'wt') as f:
|
|
json.dump(detections, f)
|
|
|
|
evaluate()
|
|
|
|
|
|
def rm(f):
|
|
if os.path.exists(f):
|
|
os.remove(f)
|
|
|
|
rm('annotations.json')
|
|
rm('detections.json')
|