opencv/modules/gpuimgproc/doc/feature_detection.rst
Vladislav Vinogradov 9498f82085 updated documentation
2013-07-17 11:39:58 +04:00

123 lines
4.8 KiB
ReStructuredText

Feature Detection
=================
.. highlight:: cpp
gpu::CornernessCriteria
-----------------------
.. ocv:class:: gpu::CornernessCriteria : public Algorithm
Base class for Cornerness Criteria computation. ::
class CV_EXPORTS CornernessCriteria : public Algorithm
{
public:
virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
};
gpu::CornernessCriteria::compute
--------------------------------
Computes the cornerness criteria at each image pixel.
.. ocv:function:: void gpu::CornernessCriteria::compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
:param src: Source image.
:param dst: Destination image containing cornerness values. It will have the same size as ``src`` and ``CV_32FC1`` type.
:param stream: Stream for the asynchronous version.
gpu::createHarrisCorner
-----------------------
Creates implementation for Harris cornerness criteria.
.. ocv:function:: Ptr<CornernessCriteria> gpu::createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101)
:param srcType: Input source type. Only ``CV_8UC1`` and ``CV_32FC1`` are supported for now.
:param blockSize: Neighborhood size.
:param ksize: Aperture parameter for the Sobel operator.
:param k: Harris detector free parameter.
:param borderType: Pixel extrapolation method. Only ``BORDER_REFLECT101`` and ``BORDER_REPLICATE`` are supported for now.
.. seealso:: :ocv:func:`cornerHarris`
gpu::createMinEigenValCorner
----------------------------
Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the cornerness criteria).
.. ocv:function:: Ptr<CornernessCriteria> gpu::createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101)
:param srcType: Input source type. Only ``CV_8UC1`` and ``CV_32FC1`` are supported for now.
:param blockSize: Neighborhood size.
:param ksize: Aperture parameter for the Sobel operator.
:param borderType: Pixel extrapolation method. Only ``BORDER_REFLECT101`` and ``BORDER_REPLICATE`` are supported for now.
.. seealso:: :ocv:func:`cornerMinEigenVal`
gpu::CornersDetector
--------------------
.. ocv:class:: gpu::CornersDetector : public Algorithm
Base class for Corners Detector. ::
class CV_EXPORTS CornersDetector : public Algorithm
{
public:
virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray()) = 0;
};
gpu::CornersDetector::detect
----------------------------
Determines strong corners on an image.
.. ocv:function:: void gpu::CornersDetector::detect(InputArray image, OutputArray corners, InputArray mask = noArray())
:param image: Input 8-bit or floating-point 32-bit, single-channel image.
:param corners: Output vector of detected corners (1-row matrix with CV_32FC2 type with corners positions).
:param mask: Optional region of interest. If the image is not empty (it needs to have the type ``CV_8UC1`` and the same size as ``image`` ), it specifies the region in which the corners are detected.
gpu::createGoodFeaturesToTrackDetector
--------------------------------------
Creates implementation for :ocv:class:`gpu::CornersDetector` .
.. ocv:function:: Ptr<CornersDetector> gpu::createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04)
:param srcType: Input source type. Only ``CV_8UC1`` and ``CV_32FC1`` are supported for now.
:param maxCorners: Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned.
:param qualityLevel: Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see :ocv:func:`cornerMinEigenVal` ) or the Harris function response (see :ocv:func:`cornerHarris` ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the ``qualityLevel=0.01`` , then all the corners with the quality measure less than 15 are rejected.
:param minDistance: Minimum possible Euclidean distance between the returned corners.
:param blockSize: Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See :ocv:func:`cornerEigenValsAndVecs` .
:param useHarrisDetector: Parameter indicating whether to use a Harris detector (see :ocv:func:`cornerHarris`) or :ocv:func:`cornerMinEigenVal`.
:param harrisK: Free parameter of the Harris detector.
.. seealso:: :ocv:func:`goodFeaturesToTrack`