opencv/modules/gpuimgproc/perf/perf_hough.cpp
2013-07-17 11:39:55 +04:00

321 lines
10 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
using namespace perf;
//////////////////////////////////////////////////////////////////////
// HoughLines
namespace
{
struct Vec4iComparator
{
bool operator()(const cv::Vec4i& a, const cv::Vec4i b) const
{
if (a[0] != b[0]) return a[0] < b[0];
else if(a[1] != b[1]) return a[1] < b[1];
else if(a[2] != b[2]) return a[2] < b[2];
else return a[3] < b[3];
}
};
struct Vec3fComparator
{
bool operator()(const cv::Vec3f& a, const cv::Vec3f b) const
{
if(a[0] != b[0]) return a[0] < b[0];
else if(a[1] != b[1]) return a[1] < b[1];
else return a[2] < b[2];
}
};
struct Vec2fComparator
{
bool operator()(const cv::Vec2f& a, const cv::Vec2f b) const
{
if(a[0] != b[0]) return a[0] < b[0];
else return a[1] < b[1];
}
};
}
PERF_TEST_P(Sz, HoughLines,
GPU_TYPICAL_MAT_SIZES)
{
declare.time(30.0);
const cv::Size size = GetParam();
const float rho = 1.0f;
const float theta = static_cast<float>(CV_PI / 180.0);
const int threshold = 300;
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
cv::line(src, cv::Point(0, 100), cv::Point(src.cols, 100), cv::Scalar::all(255), 1);
cv::line(src, cv::Point(0, 200), cv::Point(src.cols, 200), cv::Scalar::all(255), 1);
cv::line(src, cv::Point(0, 400), cv::Point(src.cols, 400), cv::Scalar::all(255), 1);
cv::line(src, cv::Point(100, 0), cv::Point(100, src.rows), cv::Scalar::all(255), 1);
cv::line(src, cv::Point(200, 0), cv::Point(200, src.rows), cv::Scalar::all(255), 1);
cv::line(src, cv::Point(400, 0), cv::Point(400, src.rows), cv::Scalar::all(255), 1);
if (PERF_RUN_GPU())
{
const cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_lines;
cv::Ptr<cv::gpu::HoughLinesDetector> hough = cv::gpu::createHoughLinesDetector(rho, theta, threshold);
TEST_CYCLE() hough->detect(d_src, d_lines);
cv::Mat gpu_lines(d_lines.row(0));
cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0);
cv::Vec2f* end = begin + gpu_lines.cols;
std::sort(begin, end, Vec2fComparator());
SANITY_CHECK(gpu_lines);
}
else
{
std::vector<cv::Vec2f> cpu_lines;
TEST_CYCLE() cv::HoughLines(src, cpu_lines, rho, theta, threshold);
SANITY_CHECK(cpu_lines);
}
}
//////////////////////////////////////////////////////////////////////
// HoughLinesP
DEF_PARAM_TEST_1(Image, std::string);
PERF_TEST_P(Image, HoughLinesP,
testing::Values("cv/shared/pic5.png", "stitching/a1.png"))
{
declare.time(30.0);
const std::string fileName = getDataPath(GetParam());
const float rho = 1.0f;
const float theta = static_cast<float>(CV_PI / 180.0);
const int threshold = 100;
const int minLineLenght = 50;
const int maxLineGap = 5;
const cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::Mat mask;
cv::Canny(image, mask, 50, 100);
if (PERF_RUN_GPU())
{
const cv::gpu::GpuMat d_mask(mask);
cv::gpu::GpuMat d_lines;
cv::Ptr<cv::gpu::HoughSegmentDetector> hough = cv::gpu::createHoughSegmentDetector(rho, theta, minLineLenght, maxLineGap);
TEST_CYCLE() hough->detect(d_mask, d_lines);
cv::Mat gpu_lines(d_lines);
cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>();
cv::Vec4i* end = begin + gpu_lines.cols;
std::sort(begin, end, Vec4iComparator());
SANITY_CHECK(gpu_lines);
}
else
{
std::vector<cv::Vec4i> cpu_lines;
TEST_CYCLE() cv::HoughLinesP(mask, cpu_lines, rho, theta, threshold, minLineLenght, maxLineGap);
SANITY_CHECK(cpu_lines);
}
}
//////////////////////////////////////////////////////////////////////
// HoughCircles
DEF_PARAM_TEST(Sz_Dp_MinDist, cv::Size, float, float);
PERF_TEST_P(Sz_Dp_MinDist, HoughCircles,
Combine(GPU_TYPICAL_MAT_SIZES,
Values(1.0f, 2.0f, 4.0f),
Values(1.0f)))
{
declare.time(30.0);
const cv::Size size = GET_PARAM(0);
const float dp = GET_PARAM(1);
const float minDist = GET_PARAM(2);
const int minRadius = 10;
const int maxRadius = 30;
const int cannyThreshold = 100;
const int votesThreshold = 15;
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
cv::circle(src, cv::Point(100, 100), 20, cv::Scalar::all(255), -1);
cv::circle(src, cv::Point(200, 200), 25, cv::Scalar::all(255), -1);
cv::circle(src, cv::Point(200, 100), 25, cv::Scalar::all(255), -1);
if (PERF_RUN_GPU())
{
const cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_circles;
cv::Ptr<cv::gpu::HoughCirclesDetector> houghCircles = cv::gpu::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
TEST_CYCLE() houghCircles->detect(d_src, d_circles);
cv::Mat gpu_circles(d_circles);
cv::Vec3f* begin = gpu_circles.ptr<cv::Vec3f>(0);
cv::Vec3f* end = begin + gpu_circles.cols;
std::sort(begin, end, Vec3fComparator());
SANITY_CHECK(gpu_circles);
}
else
{
std::vector<cv::Vec3f> cpu_circles;
TEST_CYCLE() cv::HoughCircles(src, cpu_circles, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
SANITY_CHECK(cpu_circles);
}
}
//////////////////////////////////////////////////////////////////////
// GeneralizedHough
enum { GHT_POSITION = cv::GeneralizedHough::GHT_POSITION,
GHT_SCALE = cv::GeneralizedHough::GHT_SCALE,
GHT_ROTATION = cv::GeneralizedHough::GHT_ROTATION
};
CV_FLAGS(GHMethod, GHT_POSITION, GHT_SCALE, GHT_ROTATION);
DEF_PARAM_TEST(Method_Sz, GHMethod, cv::Size);
PERF_TEST_P(Method_Sz, GeneralizedHough,
Combine(Values(GHMethod(GHT_POSITION), GHMethod(GHT_POSITION | GHT_SCALE), GHMethod(GHT_POSITION | GHT_ROTATION), GHMethod(GHT_POSITION | GHT_SCALE | GHT_ROTATION)),
GPU_TYPICAL_MAT_SIZES))
{
declare.time(10);
const int method = GET_PARAM(0);
const cv::Size imageSize = GET_PARAM(1);
const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(templ.empty());
cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0));
templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows)));
cv::RNG rng(123456789);
const int objCount = rng.uniform(5, 15);
for (int i = 0; i < objCount; ++i)
{
double scale = rng.uniform(0.7, 1.3);
bool rotate = 1 == rng.uniform(0, 2);
cv::Mat obj;
cv::resize(templ, obj, cv::Size(), scale, scale);
if (rotate)
obj = obj.t();
cv::Point pos;
pos.x = rng.uniform(0, image.cols - obj.cols);
pos.y = rng.uniform(0, image.rows - obj.rows);
cv::Mat roi = image(cv::Rect(pos, obj.size()));
cv::add(roi, obj, roi);
}
cv::Mat edges;
cv::Canny(image, edges, 50, 100);
cv::Mat dx, dy;
cv::Sobel(image, dx, CV_32F, 1, 0);
cv::Sobel(image, dy, CV_32F, 0, 1);
if (PERF_RUN_GPU())
{
const cv::gpu::GpuMat d_edges(edges);
const cv::gpu::GpuMat d_dx(dx);
const cv::gpu::GpuMat d_dy(dy);
cv::gpu::GpuMat posAndVotes;
cv::Ptr<cv::gpu::GeneralizedHough> d_hough = cv::gpu::GeneralizedHough::create(method);
if (method & GHT_ROTATION)
{
d_hough->set("maxAngle", 90.0);
d_hough->set("angleStep", 2.0);
}
d_hough->setTemplate(cv::gpu::GpuMat(templ));
TEST_CYCLE() d_hough->detect(d_edges, d_dx, d_dy, posAndVotes);
const cv::gpu::GpuMat positions(1, posAndVotes.cols, CV_32FC4, posAndVotes.data);
GPU_SANITY_CHECK(positions);
}
else
{
cv::Mat positions;
cv::Ptr<cv::GeneralizedHough> hough = cv::GeneralizedHough::create(method);
if (method & GHT_ROTATION)
{
hough->set("maxAngle", 90.0);
hough->set("angleStep", 2.0);
}
hough->setTemplate(templ);
TEST_CYCLE() hough->detect(edges, dx, dy, positions);
CPU_SANITY_CHECK(positions);
}
}