opencv/3rdparty/lapack/sormbr.c

359 lines
10 KiB
C

/* sormbr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
/* Subroutine */ int sormbr_(char *vect, char *side, char *trans, integer *m,
integer *n, integer *k, real *a, integer *lda, real *tau, real *c__,
integer *ldc, real *work, integer *lwork, integer *info)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
char ch__1[2];
/* Builtin functions */
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i1, i2, nb, mi, ni, nq, nw;
logical left;
extern logical lsame_(char *, char *);
integer iinfo;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
logical notran, applyq;
char transt[1];
extern /* Subroutine */ int sormlq_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, real *, integer *, real *,
integer *, integer *);
integer lwkopt;
logical lquery;
extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, real *, integer *, real *,
integer *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C */
/* with */
/* SIDE = 'L' SIDE = 'R' */
/* TRANS = 'N': Q * C C * Q */
/* TRANS = 'T': Q**T * C C * Q**T */
/* If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C */
/* with */
/* SIDE = 'L' SIDE = 'R' */
/* TRANS = 'N': P * C C * P */
/* TRANS = 'T': P**T * C C * P**T */
/* Here Q and P**T are the orthogonal matrices determined by SGEBRD when */
/* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and */
/* P**T are defined as products of elementary reflectors H(i) and G(i) */
/* respectively. */
/* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */
/* order of the orthogonal matrix Q or P**T that is applied. */
/* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */
/* if nq >= k, Q = H(1) H(2) . . . H(k); */
/* if nq < k, Q = H(1) H(2) . . . H(nq-1). */
/* If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */
/* if k < nq, P = G(1) G(2) . . . G(k); */
/* if k >= nq, P = G(1) G(2) . . . G(nq-1). */
/* Arguments */
/* ========= */
/* VECT (input) CHARACTER*1 */
/* = 'Q': apply Q or Q**T; */
/* = 'P': apply P or P**T. */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply Q, Q**T, P or P**T from the Left; */
/* = 'R': apply Q, Q**T, P or P**T from the Right. */
/* TRANS (input) CHARACTER*1 */
/* = 'N': No transpose, apply Q or P; */
/* = 'T': Transpose, apply Q**T or P**T. */
/* M (input) INTEGER */
/* The number of rows of the matrix C. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. N >= 0. */
/* K (input) INTEGER */
/* If VECT = 'Q', the number of columns in the original */
/* matrix reduced by SGEBRD. */
/* If VECT = 'P', the number of rows in the original */
/* matrix reduced by SGEBRD. */
/* K >= 0. */
/* A (input) REAL array, dimension */
/* (LDA,min(nq,K)) if VECT = 'Q' */
/* (LDA,nq) if VECT = 'P' */
/* The vectors which define the elementary reflectors H(i) and */
/* G(i), whose products determine the matrices Q and P, as */
/* returned by SGEBRD. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. */
/* If VECT = 'Q', LDA >= max(1,nq); */
/* if VECT = 'P', LDA >= max(1,min(nq,K)). */
/* TAU (input) REAL array, dimension (min(nq,K)) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i) or G(i) which determines Q or P, as returned */
/* by SGEBRD in the array argument TAUQ or TAUP. */
/* C (input/output) REAL array, dimension (LDC,N) */
/* On entry, the M-by-N matrix C. */
/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q */
/* or P*C or P**T*C or C*P or C*P**T. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If SIDE = 'L', LWORK >= max(1,N); */
/* if SIDE = 'R', LWORK >= max(1,M). */
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/* blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
applyq = lsame_(vect, "Q");
left = lsame_(side, "L");
notran = lsame_(trans, "N");
lquery = *lwork == -1;
/* NQ is the order of Q or P and NW is the minimum dimension of WORK */
if (left) {
nq = *m;
nw = *n;
} else {
nq = *n;
nw = *m;
}
if (! applyq && ! lsame_(vect, "P")) {
*info = -1;
} else if (! left && ! lsame_(side, "R")) {
*info = -2;
} else if (! notran && ! lsame_(trans, "T")) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*k < 0) {
*info = -6;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = min(nq,*k);
if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) {
*info = -8;
} else if (*ldc < max(1,*m)) {
*info = -11;
} else if (*lwork < max(1,nw) && ! lquery) {
*info = -13;
}
}
if (*info == 0) {
if (applyq) {
if (left) {
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = *m - 1;
i__2 = *m - 1;
nb = ilaenv_(&c__1, "SORMQR", ch__1, &i__1, n, &i__2, &c_n1);
} else {
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = *n - 1;
i__2 = *n - 1;
nb = ilaenv_(&c__1, "SORMQR", ch__1, m, &i__1, &i__2, &c_n1);
}
} else {
if (left) {
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = *m - 1;
i__2 = *m - 1;
nb = ilaenv_(&c__1, "SORMLQ", ch__1, &i__1, n, &i__2, &c_n1);
} else {
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = *n - 1;
i__2 = *n - 1;
nb = ilaenv_(&c__1, "SORMLQ", ch__1, m, &i__1, &i__2, &c_n1);
}
}
lwkopt = max(1,nw) * nb;
work[1] = (real) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SORMBR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
work[1] = 1.f;
if (*m == 0 || *n == 0) {
return 0;
}
if (applyq) {
/* Apply Q */
if (nq >= *k) {
/* Q was determined by a call to SGEBRD with nq >= k */
sormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], lwork, &iinfo);
} else if (nq > 1) {
/* Q was determined by a call to SGEBRD with nq < k */
if (left) {
mi = *m - 1;
ni = *n;
i1 = 2;
i2 = 1;
} else {
mi = *m;
ni = *n - 1;
i1 = 1;
i2 = 2;
}
i__1 = nq - 1;
sormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
, &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
}
} else {
/* Apply P */
if (notran) {
*(unsigned char *)transt = 'T';
} else {
*(unsigned char *)transt = 'N';
}
if (nq > *k) {
/* P was determined by a call to SGEBRD with nq > k */
sormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], lwork, &iinfo);
} else if (nq > 1) {
/* P was determined by a call to SGEBRD with nq <= k */
if (left) {
mi = *m - 1;
ni = *n;
i1 = 2;
i2 = 1;
} else {
mi = *m;
ni = *n - 1;
i1 = 1;
i2 = 2;
}
i__1 = nq - 1;
sormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda,
&tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &
iinfo);
}
}
work[1] = (real) lwkopt;
return 0;
/* End of SORMBR */
} /* sormbr_ */