mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
f8fb3a7f55
#25006 #25314 This pull request removes hed_pretrained caffe model to the SOTA dexined onnx model for edge detection. Usage of conventional methods like canny has also been added The obsolete cpp and python sample has been removed TODO: - [ ] Remove temporary hack for quantized models. Refer issue https://github.com/opencv/opencv_zoo/issues/273 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
177 lines
7.5 KiB
Python
177 lines
7.5 KiB
Python
'''
|
|
This sample demonstrates edge detection with dexined and canny edge detection techniques.
|
|
For switching between deep learning based model(dexined) and canny edge detector, press space bar in case of video. In case of image, pass the argument --method for switching between dexined and canny.
|
|
'''
|
|
|
|
import cv2 as cv
|
|
import argparse
|
|
import numpy as np
|
|
from common import *
|
|
|
|
def get_args_parser(func_args):
|
|
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
|
|
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
|
|
|
|
parser = argparse.ArgumentParser(add_help=False)
|
|
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
|
help='An optional path to file with preprocessing parameters.')
|
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.', default=0, required=False)
|
|
parser.add_argument('--method', help='choose method: dexined or canny', default='canny', required=False)
|
|
parser.add_argument('--backend', default="default", type=str, choices=backends,
|
|
help="Choose one of computation backends: "
|
|
"default: automatically (by default), "
|
|
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"opencv: OpenCV implementation, "
|
|
"vkcom: VKCOM, "
|
|
"cuda: CUDA, "
|
|
"webnn: WebNN")
|
|
parser.add_argument('--target', default="cpu", type=str, choices=targets,
|
|
help="Choose one of target computation devices: "
|
|
"cpu: CPU target (by default), "
|
|
"opencl: OpenCL, "
|
|
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
|
"ncs2_vpu: NCS2 VPU, "
|
|
"hddl_vpu: HDDL VPU, "
|
|
"vulkan: Vulkan, "
|
|
"cuda: CUDA, "
|
|
"cuda_fp16: CUDA fp16 (half-float preprocess)")
|
|
|
|
args, _ = parser.parse_known_args()
|
|
add_preproc_args(args.zoo, parser, 'edge_detection', 'dexined')
|
|
parser = argparse.ArgumentParser(parents=[parser],
|
|
description='''
|
|
To run:
|
|
Canny:
|
|
python edge_detection.py --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
|
|
Dexined:
|
|
python edge_detection.py dexined --input=path/to/your/input/image/or/video
|
|
|
|
"In case of video input, for switching between deep learning based model (Dexined) and Canny edge detector, press space bar. Pass as argument in case of image input."
|
|
|
|
Model path can also be specified using --model argument
|
|
''', formatter_class=argparse.RawTextHelpFormatter)
|
|
return parser.parse_args(func_args)
|
|
|
|
threshold1 = 0
|
|
threshold2 = 50
|
|
blur_amount = 5
|
|
gray = None
|
|
|
|
def sigmoid(x):
|
|
return 1.0 / (1.0 + np.exp(-x))
|
|
|
|
def post_processing(output, shape):
|
|
h, w = shape
|
|
preds = []
|
|
for p in output:
|
|
img = sigmoid(p)
|
|
img = np.squeeze(img)
|
|
img = cv.normalize(img, None, 0, 255, cv.NORM_MINMAX, cv.CV_8U)
|
|
img = cv.resize(img, (w, h))
|
|
preds.append(img)
|
|
fuse = preds[-1]
|
|
ave = np.array(preds, dtype=np.float32)
|
|
ave = np.uint8(np.mean(ave, axis=0))
|
|
return fuse, ave
|
|
|
|
def apply_canny(image):
|
|
global threshold1, threshold2, blur_amount
|
|
kernel_size = 2 * blur_amount + 1
|
|
blurred = cv.GaussianBlur(image, (kernel_size, kernel_size), 0)
|
|
result = cv.Canny(blurred, threshold1, threshold2)
|
|
cv.imshow('Output', result)
|
|
|
|
def setupCannyWindow(image):
|
|
global gray
|
|
cv.destroyWindow('Output')
|
|
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
|
|
cv.moveWindow('Output', 200, 50)
|
|
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
|
|
|
|
cv.createTrackbar('thrs1', 'Output', threshold1, 255, lambda value: [globals().__setitem__('threshold1', value), apply_canny(gray)])
|
|
cv.createTrackbar('thrs2', 'Output', threshold2, 255, lambda value: [globals().__setitem__('threshold2', value), apply_canny(gray)])
|
|
cv.createTrackbar('blur', 'Output', blur_amount, 20, lambda value: [globals().__setitem__('blur_amount', value), apply_canny(gray)])
|
|
|
|
def loadModel(args):
|
|
net = cv.dnn.readNetFromONNX(args.model)
|
|
net.setPreferableBackend(get_backend_id(args.backend))
|
|
net.setPreferableTarget(get_target_id(args.target))
|
|
return net
|
|
|
|
def apply_dexined(model, image):
|
|
out = model.forward()
|
|
result,_ = post_processing(out, image.shape[:2])
|
|
t, _ = model.getPerfProfile()
|
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
|
cv.putText(image, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
|
cv.putText(result, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
|
|
cv.imshow("Output", result)
|
|
|
|
def main(func_args=None):
|
|
args = get_args_parser(func_args)
|
|
|
|
cap = cv.VideoCapture(cv.samples.findFile(args.input) if args.input else 0)
|
|
if not cap.isOpened():
|
|
print("Failed to open the input video")
|
|
exit(-1)
|
|
cv.namedWindow('Input', cv.WINDOW_AUTOSIZE)
|
|
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
|
|
cv.moveWindow('Output', 200, 50)
|
|
|
|
method = args.method
|
|
if os.getenv('OPENCV_SAMPLES_DATA_PATH') is not None or hasattr(args, 'model'):
|
|
try:
|
|
args.model = findModel(args.model, args.sha1)
|
|
method = 'dexined'
|
|
except:
|
|
print("[WARN] Model file not provided, using canny instead. Pass model using --model=/path/to/dexined.onnx to use dexined model.")
|
|
method = 'canny'
|
|
args.model = None
|
|
else:
|
|
print("[WARN] Model file not provided, using canny instead. Pass model using --model=/path/to/dexined.onnx to use dexined model.")
|
|
method = 'canny'
|
|
|
|
if method == 'canny':
|
|
dummy = np.zeros((512, 512, 3), dtype="uint8")
|
|
setupCannyWindow(dummy)
|
|
net = None
|
|
if method == "dexined":
|
|
net = loadModel(args)
|
|
while cv.waitKey(1) < 0:
|
|
hasFrame, image = cap.read()
|
|
if not hasFrame:
|
|
print("Press any key to exit")
|
|
cv.waitKey(0)
|
|
break
|
|
if method == "canny":
|
|
global gray
|
|
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
|
|
apply_canny(gray)
|
|
elif method == "dexined":
|
|
inp = cv.dnn.blobFromImage(image, args.scale, (args.width, args.height), args.mean, swapRB=args.rgb, crop=False)
|
|
|
|
net.setInput(inp)
|
|
apply_dexined(net, image)
|
|
|
|
cv.imshow("Input", image)
|
|
key = cv.waitKey(30)
|
|
if key == ord(' ') and method == 'canny':
|
|
if hasattr(args, 'model') and args.model is not None:
|
|
print("model: ", args.model)
|
|
method = "dexined"
|
|
if net is None:
|
|
net = loadModel(args)
|
|
cv.destroyWindow('Output')
|
|
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
|
|
cv.moveWindow('Output', 200, 50)
|
|
else:
|
|
print("[ERROR] Provide model file using --model to use dexined. Download model using python download_models.py dexined from dnn samples directory")
|
|
elif key == ord(' ') and method=='dexined':
|
|
method = "canny"
|
|
setupCannyWindow(image)
|
|
elif key == 27 or key == ord('q'):
|
|
break
|
|
cv.destroyAllWindows()
|
|
|
|
if __name__ == '__main__':
|
|
main() |