mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
212 lines
7.2 KiB
C++
212 lines
7.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../../precomp.hpp"
|
|
#include <string>
|
|
#include <vector>
|
|
#include "../include/common.hpp"
|
|
#include "../include/ocl4dnn.hpp"
|
|
#include "opencl_kernels_dnn.hpp"
|
|
|
|
namespace cv { namespace dnn { namespace ocl4dnn {
|
|
template<typename Dtype>
|
|
OCL4DNNPool<Dtype>::OCL4DNNPool(OCL4DNNPoolConfig config)
|
|
{
|
|
int dims = config.in_shape.size();
|
|
int spatial_dims = 2;
|
|
|
|
channels_ = config.channels;
|
|
pool_method_ = config.pool_method;
|
|
avePoolPaddedArea = config.avePoolPaddedArea;
|
|
|
|
for (int i = 0; i < spatial_dims; ++i)
|
|
{
|
|
kernel_shape_.push_back(i == 0 ? config.kernel.height : config.kernel.width);
|
|
pad_.push_back(i == 0 ? config.pad.height : config.pad.width);
|
|
stride_.push_back(i == 0 ? config.stride.height : config.stride.width);
|
|
im_in_shape_.push_back(config.in_shape[dims - spatial_dims + i]);
|
|
im_out_shape_.push_back(config.out_shape[dims - spatial_dims + i]);
|
|
}
|
|
|
|
kernel_h_ = kernel_shape_[0];
|
|
kernel_w_ = kernel_shape_[1];
|
|
stride_h_ = stride_[0];
|
|
stride_w_ = stride_[1];
|
|
pad_h_ = pad_[0];
|
|
pad_w_ = pad_[1];
|
|
height_ = im_in_shape_[0];
|
|
width_ = im_in_shape_[1];
|
|
pooled_height_ = im_out_shape_[0];
|
|
pooled_width_ = im_out_shape_[1];
|
|
|
|
count_ = 1;
|
|
for (int i = 0; i < config.out_shape.size(); ++i)
|
|
{
|
|
count_ *= config.out_shape[i];
|
|
}
|
|
}
|
|
|
|
template<typename Dtype>
|
|
OCL4DNNPool<Dtype>::~OCL4DNNPool()
|
|
{
|
|
// nothing
|
|
}
|
|
|
|
template<typename Dtype>
|
|
bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
|
|
UMat& top,
|
|
UMat& top_mask)
|
|
{
|
|
bool ret = true;
|
|
size_t global[] = { 128 * 128 };
|
|
size_t local[] = { 128 };
|
|
|
|
// support 2D case
|
|
switch (pool_method_)
|
|
{
|
|
case LIBDNN_POOLING_METHOD_MAX:
|
|
{
|
|
bool haveMask = !top_mask.empty();
|
|
ocl::Kernel oclk_max_pool_forward(
|
|
haveMask ? CL_KERNEL_SELECT("max_pool_forward_mask") : CL_KERNEL_SELECT("max_pool_forward"),
|
|
ocl::dnn::ocl4dnn_pooling_oclsrc,
|
|
format("-D KERNEL_MAX_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
|
|
" -D STRIDE_W=%d -D STRIDE_H=%d"
|
|
" -D PAD_W=%d -D PAD_H=%d%s",
|
|
kernel_w_, kernel_h_,
|
|
stride_w_, stride_h_,
|
|
pad_w_, pad_h_,
|
|
haveMask ? " -D HAVE_MASK=1" : ""
|
|
));
|
|
|
|
if (oclk_max_pool_forward.empty())
|
|
return false;
|
|
|
|
oclk_max_pool_forward.args(
|
|
count_,
|
|
ocl::KernelArg::PtrReadOnly(bottom),
|
|
channels_,
|
|
height_,
|
|
width_,
|
|
pooled_height_,
|
|
pooled_width_,
|
|
ocl::KernelArg::PtrWriteOnly(top),
|
|
ocl::KernelArg::PtrWriteOnly(top_mask)
|
|
);
|
|
|
|
ret = oclk_max_pool_forward.run(1, global, local, false);
|
|
}
|
|
break;
|
|
case LIBDNN_POOLING_METHOD_AVE:
|
|
{
|
|
CV_Assert(top_mask.empty());
|
|
|
|
ocl::Kernel oclk_ave_pool_forward(CL_KERNEL_SELECT("ave_pool_forward"),
|
|
ocl::dnn::ocl4dnn_pooling_oclsrc,
|
|
format("-D KERNEL_AVE_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
|
|
" -D STRIDE_W=%d -D STRIDE_H=%d"
|
|
" -D PAD_W=%d -D PAD_H=%d%s",
|
|
kernel_w_, kernel_h_,
|
|
stride_w_, stride_h_,
|
|
pad_w_, pad_h_,
|
|
avePoolPaddedArea ? " -D AVE_POOL_PADDING_AREA" : ""
|
|
));
|
|
|
|
if (oclk_ave_pool_forward.empty())
|
|
return false;
|
|
|
|
oclk_ave_pool_forward.args(
|
|
count_,
|
|
ocl::KernelArg::PtrReadOnly(bottom),
|
|
channels_,
|
|
height_,
|
|
width_,
|
|
pooled_height_,
|
|
pooled_width_,
|
|
ocl::KernelArg::PtrWriteOnly(top)
|
|
);
|
|
|
|
ret = oclk_ave_pool_forward.run(1, global, local, false);
|
|
}
|
|
break;
|
|
case LIBDNN_POOLING_METHOD_STO:
|
|
{
|
|
CV_Assert(top_mask.empty());
|
|
|
|
ocl::Kernel oclk_sto_pool_forward(CL_KERNEL_SELECT("sto_pool_forward_test"),
|
|
ocl::dnn::ocl4dnn_pooling_oclsrc,
|
|
format("-D KERNEL_STO_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
|
|
" -D STRIDE_W=%d -D STRIDE_H=%d",
|
|
kernel_w_, kernel_h_,
|
|
stride_w_, stride_h_
|
|
));
|
|
|
|
|
|
if (oclk_sto_pool_forward.empty())
|
|
return false;
|
|
|
|
oclk_sto_pool_forward.args(
|
|
count_,
|
|
ocl::KernelArg::PtrReadOnly(bottom),
|
|
channels_,
|
|
height_,
|
|
width_,
|
|
pooled_height_,
|
|
pooled_width_,
|
|
ocl::KernelArg::PtrWriteOnly(top)
|
|
);
|
|
|
|
ret = oclk_sto_pool_forward.run(1, global, local, false);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
ret = false;
|
|
LOG(FATAL)<< "Unknown pooling method.";
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
template class OCL4DNNPool<float>;
|
|
|
|
}}} // namespace cv::dnn::ocl4dnn
|