opencv/modules/dnn/src/ocl4dnn/src/ocl4dnn_pool.cpp
2018-03-01 12:12:40 +03:00

212 lines
7.2 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../../precomp.hpp"
#include <string>
#include <vector>
#include "../include/common.hpp"
#include "../include/ocl4dnn.hpp"
#include "opencl_kernels_dnn.hpp"
namespace cv { namespace dnn { namespace ocl4dnn {
template<typename Dtype>
OCL4DNNPool<Dtype>::OCL4DNNPool(OCL4DNNPoolConfig config)
{
int dims = config.in_shape.size();
int spatial_dims = 2;
channels_ = config.channels;
pool_method_ = config.pool_method;
avePoolPaddedArea = config.avePoolPaddedArea;
for (int i = 0; i < spatial_dims; ++i)
{
kernel_shape_.push_back(i == 0 ? config.kernel.height : config.kernel.width);
pad_.push_back(i == 0 ? config.pad.height : config.pad.width);
stride_.push_back(i == 0 ? config.stride.height : config.stride.width);
im_in_shape_.push_back(config.in_shape[dims - spatial_dims + i]);
im_out_shape_.push_back(config.out_shape[dims - spatial_dims + i]);
}
kernel_h_ = kernel_shape_[0];
kernel_w_ = kernel_shape_[1];
stride_h_ = stride_[0];
stride_w_ = stride_[1];
pad_h_ = pad_[0];
pad_w_ = pad_[1];
height_ = im_in_shape_[0];
width_ = im_in_shape_[1];
pooled_height_ = im_out_shape_[0];
pooled_width_ = im_out_shape_[1];
count_ = 1;
for (int i = 0; i < config.out_shape.size(); ++i)
{
count_ *= config.out_shape[i];
}
}
template<typename Dtype>
OCL4DNNPool<Dtype>::~OCL4DNNPool()
{
// nothing
}
template<typename Dtype>
bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
UMat& top,
UMat& top_mask)
{
bool ret = true;
size_t global[] = { 128 * 128 };
size_t local[] = { 128 };
// support 2D case
switch (pool_method_)
{
case LIBDNN_POOLING_METHOD_MAX:
{
bool haveMask = !top_mask.empty();
ocl::Kernel oclk_max_pool_forward(
haveMask ? CL_KERNEL_SELECT("max_pool_forward_mask") : CL_KERNEL_SELECT("max_pool_forward"),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_MAX_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d"
" -D PAD_W=%d -D PAD_H=%d%s",
kernel_w_, kernel_h_,
stride_w_, stride_h_,
pad_w_, pad_h_,
haveMask ? " -D HAVE_MASK=1" : ""
));
if (oclk_max_pool_forward.empty())
return false;
oclk_max_pool_forward.args(
count_,
ocl::KernelArg::PtrReadOnly(bottom),
channels_,
height_,
width_,
pooled_height_,
pooled_width_,
ocl::KernelArg::PtrWriteOnly(top),
ocl::KernelArg::PtrWriteOnly(top_mask)
);
ret = oclk_max_pool_forward.run(1, global, local, false);
}
break;
case LIBDNN_POOLING_METHOD_AVE:
{
CV_Assert(top_mask.empty());
ocl::Kernel oclk_ave_pool_forward(CL_KERNEL_SELECT("ave_pool_forward"),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_AVE_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d"
" -D PAD_W=%d -D PAD_H=%d%s",
kernel_w_, kernel_h_,
stride_w_, stride_h_,
pad_w_, pad_h_,
avePoolPaddedArea ? " -D AVE_POOL_PADDING_AREA" : ""
));
if (oclk_ave_pool_forward.empty())
return false;
oclk_ave_pool_forward.args(
count_,
ocl::KernelArg::PtrReadOnly(bottom),
channels_,
height_,
width_,
pooled_height_,
pooled_width_,
ocl::KernelArg::PtrWriteOnly(top)
);
ret = oclk_ave_pool_forward.run(1, global, local, false);
}
break;
case LIBDNN_POOLING_METHOD_STO:
{
CV_Assert(top_mask.empty());
ocl::Kernel oclk_sto_pool_forward(CL_KERNEL_SELECT("sto_pool_forward_test"),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_STO_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d",
kernel_w_, kernel_h_,
stride_w_, stride_h_
));
if (oclk_sto_pool_forward.empty())
return false;
oclk_sto_pool_forward.args(
count_,
ocl::KernelArg::PtrReadOnly(bottom),
channels_,
height_,
width_,
pooled_height_,
pooled_width_,
ocl::KernelArg::PtrWriteOnly(top)
);
ret = oclk_sto_pool_forward.run(1, global, local, false);
}
break;
default:
{
ret = false;
LOG(FATAL)<< "Unknown pooling method.";
}
}
return ret;
}
template class OCL4DNNPool<float>;
}}} // namespace cv::dnn::ocl4dnn