mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 17:43:12 +08:00
261 lines
11 KiB
C++
261 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <vector>
|
|
|
|
namespace cv {
|
|
|
|
class LineSegmentDetectorImpl CV_FINAL : public LineSegmentDetector
|
|
{
|
|
public:
|
|
|
|
/**
|
|
* Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
|
|
*
|
|
* @param _refine How should the lines found be refined?
|
|
* LSD_REFINE_NONE - No refinement applied.
|
|
* LSD_REFINE_STD - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
|
|
* LSD_REFINE_ADV - Advanced refinement. Number of false alarms is calculated,
|
|
* lines are refined through increase of precision, decrement in size, etc.
|
|
* @param _scale The scale of the image that will be used to find the lines. Range (0..1].
|
|
* @param _sigma_scale Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
|
|
* @param _quant Bound to the quantization error on the gradient norm.
|
|
* @param _ang_th Gradient angle tolerance in degrees.
|
|
* @param _log_eps Detection threshold: -log10(NFA) > _log_eps
|
|
* @param _density_th Minimal density of aligned region points in rectangle.
|
|
* @param _n_bins Number of bins in pseudo-ordering of gradient modulus.
|
|
*/
|
|
LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
|
|
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
|
|
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
|
|
|
|
/**
|
|
* Detect lines in the input image.
|
|
*
|
|
* @param _image A grayscale(CV_8UC1) input image.
|
|
* If only a roi needs to be selected, use
|
|
* lsd_ptr->detect(image(roi), ..., lines);
|
|
* lines += Scalar(roi.x, roi.y, roi.x, roi.y);
|
|
* @param _lines Return: A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line.
|
|
* Where Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
|
|
* Returned lines are strictly oriented depending on the gradient.
|
|
* @param width Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
|
|
* @param prec Return: Vector of precisions with which the lines are found.
|
|
* @param nfa Return: Vector containing number of false alarms in the line region, with precision of 10%.
|
|
* The bigger the value, logarithmically better the detection.
|
|
* * -1 corresponds to 10 mean false alarms
|
|
* * 0 corresponds to 1 mean false alarm
|
|
* * 1 corresponds to 0.1 mean false alarms
|
|
* This vector will be calculated _only_ when the objects type is REFINE_ADV
|
|
*/
|
|
void detect(InputArray _image, OutputArray _lines,
|
|
OutputArray width = noArray(), OutputArray prec = noArray(),
|
|
OutputArray nfa = noArray()) CV_OVERRIDE;
|
|
|
|
/**
|
|
* Draw lines on the given canvas.
|
|
*
|
|
* @param image The image, where lines will be drawn.
|
|
* Should have the size of the image, where the lines were found
|
|
* @param lines The lines that need to be drawn
|
|
*/
|
|
void drawSegments(InputOutputArray _image, InputArray lines) CV_OVERRIDE;
|
|
|
|
/**
|
|
* Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
|
|
*
|
|
* @param size The size of the image, where lines1 and lines2 were found.
|
|
* @param lines1 The first lines that need to be drawn. Color - Blue.
|
|
* @param lines2 The second lines that need to be drawn. Color - Red.
|
|
* @param image An optional image, where lines will be drawn.
|
|
* Should have the size of the image, where the lines were found
|
|
* @return The number of mismatching pixels between lines1 and lines2.
|
|
*/
|
|
int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) CV_OVERRIDE;
|
|
|
|
private:
|
|
LineSegmentDetectorImpl& operator= (const LineSegmentDetectorImpl&); // to quiet MSVC
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetector(
|
|
int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
|
|
double _log_eps, double _density_th, int _n_bins)
|
|
{
|
|
return makePtr<LineSegmentDetectorImpl>(
|
|
_refine, _scale, _sigma_scale, _quant, _ang_th,
|
|
_log_eps, _density_th, _n_bins);
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
|
|
double _ang_th, double _log_eps, double _density_th, int _n_bins)
|
|
{
|
|
CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 &&
|
|
_ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 &&
|
|
_n_bins > 0);
|
|
CV_UNUSED(_refine); CV_UNUSED(_log_eps);
|
|
CV_Error(Error::StsNotImplemented, "Implementation has been removed due original code license issues");
|
|
}
|
|
|
|
void LineSegmentDetectorImpl::detect(InputArray _image, OutputArray _lines,
|
|
OutputArray _width, OutputArray _prec, OutputArray _nfa)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_UNUSED(_image); CV_UNUSED(_lines);
|
|
CV_UNUSED(_width); CV_UNUSED(_prec); CV_UNUSED(_nfa);
|
|
CV_Error(Error::StsNotImplemented, "Implementation has been removed due original code license issues");
|
|
}
|
|
|
|
void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, InputArray lines)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));
|
|
|
|
if (_image.channels() == 1)
|
|
{
|
|
cvtColor(_image, _image, COLOR_GRAY2BGR);
|
|
}
|
|
|
|
Mat _lines = lines.getMat();
|
|
const int N = _lines.checkVector(4);
|
|
|
|
CV_Assert(_lines.depth() == CV_32F || _lines.depth() == CV_32S);
|
|
|
|
// Draw segments
|
|
if (_lines.depth() == CV_32F)
|
|
{
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
const Vec4f& v = _lines.at<Vec4f>(i);
|
|
const Point2f b(v[0], v[1]);
|
|
const Point2f e(v[2], v[3]);
|
|
line(_image, b, e, Scalar(0, 0, 255), 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
const Vec4i& v = _lines.at<Vec4i>(i);
|
|
const Point2i b(v[0], v[1]);
|
|
const Point2i e(v[2], v[3]);
|
|
line(_image, b, e, Scalar(0, 0, 255), 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int LineSegmentDetectorImpl::compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
Size sz = size;
|
|
if (_image.needed() && _image.size() != size) sz = _image.size();
|
|
CV_Assert(!sz.empty());
|
|
|
|
Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
|
|
Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);
|
|
|
|
Mat _lines1 = lines1.getMat();
|
|
Mat _lines2 = lines2.getMat();
|
|
const int N1 = _lines1.checkVector(4);
|
|
const int N2 = _lines2.checkVector(4);
|
|
|
|
CV_Assert(_lines1.depth() == CV_32F || _lines1.depth() == CV_32S);
|
|
CV_Assert(_lines2.depth() == CV_32F || _lines2.depth() == CV_32S);
|
|
|
|
if (_lines1.depth() == CV_32S)
|
|
_lines1.convertTo(_lines1, CV_32F);
|
|
if (_lines2.depth() == CV_32S)
|
|
_lines2.convertTo(_lines2, CV_32F);
|
|
|
|
// Draw segments
|
|
for(int i = 0; i < N1; ++i)
|
|
{
|
|
const Point2f b(_lines1.at<Vec4f>(i)[0], _lines1.at<Vec4f>(i)[1]);
|
|
const Point2f e(_lines1.at<Vec4f>(i)[2], _lines1.at<Vec4f>(i)[3]);
|
|
line(I1, b, e, Scalar::all(255), 1);
|
|
}
|
|
for(int i = 0; i < N2; ++i)
|
|
{
|
|
const Point2f b(_lines2.at<Vec4f>(i)[0], _lines2.at<Vec4f>(i)[1]);
|
|
const Point2f e(_lines2.at<Vec4f>(i)[2], _lines2.at<Vec4f>(i)[3]);
|
|
line(I2, b, e, Scalar::all(255), 1);
|
|
}
|
|
|
|
// Count the pixels that don't agree
|
|
Mat Ixor;
|
|
bitwise_xor(I1, I2, Ixor);
|
|
int N = countNonZero(Ixor);
|
|
|
|
if (_image.needed())
|
|
{
|
|
CV_Assert(_image.channels() == 3);
|
|
Mat img = _image.getMatRef();
|
|
CV_Assert(img.isContinuous() && I1.isContinuous() && I2.isContinuous());
|
|
|
|
for (unsigned int i = 0; i < I1.total(); ++i)
|
|
{
|
|
uchar i1 = I1.ptr()[i];
|
|
uchar i2 = I2.ptr()[i];
|
|
if (i1 || i2)
|
|
{
|
|
unsigned int base_idx = i * 3;
|
|
if (i1) img.ptr()[base_idx] = 255;
|
|
else img.ptr()[base_idx] = 0;
|
|
img.ptr()[base_idx + 1] = 0;
|
|
if (i2) img.ptr()[base_idx + 2] = 255;
|
|
else img.ptr()[base_idx + 2] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
} // namespace cv
|