opencv/modules/imgproc/src/blend.cpp
Tomoaki Teshima aec59aba34 suppress warnings
- brush up the implementation
2017-02-23 09:11:12 +09:00

406 lines
18 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
namespace cv {
#if CV_SIMD128
static inline v_float32x4 blend(const v_float32x4& v_src1, const v_float32x4& v_src2, const v_float32x4& v_w1, const v_float32x4& v_w2)
{
const v_float32x4 v_eps = v_setall_f32(1e-5f);
v_float32x4 v_denom = v_w1 + v_w2 + v_eps;
return (v_src1 * v_w1 + v_src2 * v_w2) / v_denom;
}
static inline v_float32x4 blend(const v_float32x4& v_src1, const v_float32x4& v_src2, const float* w_ptr1, const float* w_ptr2, int offset)
{
v_float32x4 v_w1 = v_load(w_ptr1 + offset);
v_float32x4 v_w2 = v_load(w_ptr2 + offset);
return blend(v_src1, v_src2, v_w1, v_w2);
}
static inline v_uint32x4 saturate_f32_u32(const v_float32x4& vec)
{
const v_int32x4 z = v_setzero_s32();
const v_int32x4 x = v_setall_s32(255);
return v_reinterpret_as_u32(v_min(v_max(v_round(vec), z), x));
}
static inline v_uint8x16 pack_f32tou8(v_float32x4& val0, v_float32x4& val1, v_float32x4& val2, v_float32x4& val3)
{
v_uint32x4 a = saturate_f32_u32(val0);
v_uint32x4 b = saturate_f32_u32(val1);
v_uint32x4 c = saturate_f32_u32(val2);
v_uint32x4 d = saturate_f32_u32(val3);
v_uint16x8 e = v_pack(a, b);
v_uint16x8 f = v_pack(c, d);
return v_pack(e, f);
}
static inline void store_pack_f32tou8(uchar* ptr, v_float32x4& val0, v_float32x4& val1, v_float32x4& val2, v_float32x4& val3)
{
v_store((ptr), pack_f32tou8(val0, val1, val2, val3));
}
static inline void expand_u8tof32(const v_uint8x16& src, v_float32x4& dst0, v_float32x4& dst1, v_float32x4& dst2, v_float32x4& dst3)
{
v_uint16x8 a0, a1;
v_expand(src, a0, a1);
v_uint32x4 b0, b1,b2,b3;
v_expand(a0, b0, b1);
v_expand(a1, b2, b3);
dst0 = v_cvt_f32(v_reinterpret_as_s32(b0));
dst1 = v_cvt_f32(v_reinterpret_as_s32(b1));
dst2 = v_cvt_f32(v_reinterpret_as_s32(b2));
dst3 = v_cvt_f32(v_reinterpret_as_s32(b3));
}
static inline void load_expand_u8tof32(const uchar* ptr, v_float32x4& dst0, v_float32x4& dst1, v_float32x4& dst2, v_float32x4& dst3)
{
v_uint8x16 a = v_load((ptr));
expand_u8tof32(a, dst0, dst1, dst2, dst3);
}
int blendLinearSimd128(const uchar* src1, const uchar* src2, const float* weights1, const float* weights2, uchar* dst, int x, int width, int cn);
int blendLinearSimd128(const float* src1, const float* src2, const float* weights1, const float* weights2, float* dst, int x, int width, int cn);
int blendLinearSimd128(const uchar* src1, const uchar* src2, const float* weights1, const float* weights2, uchar* dst, int x, int width, int cn)
{
int step = v_uint8x16::nlanes * cn;
int weight_step = v_uint8x16::nlanes;
switch(cn)
{
case 1:
for(int weight_offset = 0 ; x <= width - step; x += step, weight_offset += weight_step)
{
v_float32x4 v_src10, v_src11, v_src12, v_src13;
v_float32x4 v_src20, v_src21, v_src22, v_src23;
load_expand_u8tof32(src1 + x, v_src10, v_src11, v_src12, v_src13);
load_expand_u8tof32(src2 + x, v_src20, v_src21, v_src22, v_src23);
v_float32x4 v_dst0 = blend(v_src10, v_src20, weights1, weights2, weight_offset);
v_float32x4 v_dst1 = blend(v_src11, v_src21, weights1, weights2, weight_offset + 4);
v_float32x4 v_dst2 = blend(v_src12, v_src22, weights1, weights2, weight_offset + 8);
v_float32x4 v_dst3 = blend(v_src13, v_src23, weights1, weights2, weight_offset + 12);
store_pack_f32tou8(dst + x, v_dst0, v_dst1, v_dst2, v_dst3);
}
break;
case 2:
for(int weight_offset = 0 ; x <= width - step; x += step, weight_offset += weight_step)
{
v_uint8x16 v_src10, v_src11, v_src20, v_src21;
v_load_deinterleave(src1 + x, v_src10, v_src11);
v_load_deinterleave(src2 + x, v_src20, v_src21);
v_float32x4 v_src100, v_src101, v_src102, v_src103, v_src110, v_src111, v_src112, v_src113;
v_float32x4 v_src200, v_src201, v_src202, v_src203, v_src210, v_src211, v_src212, v_src213;
expand_u8tof32(v_src10, v_src100, v_src101, v_src102, v_src103);
expand_u8tof32(v_src11, v_src110, v_src111, v_src112, v_src113);
expand_u8tof32(v_src20, v_src200, v_src201, v_src202, v_src203);
expand_u8tof32(v_src21, v_src210, v_src211, v_src212, v_src213);
v_float32x4 v_dst0 = blend(v_src100, v_src200, weights1, weights2, weight_offset);
v_float32x4 v_dst1 = blend(v_src110, v_src210, weights1, weights2, weight_offset);
v_float32x4 v_dst2 = blend(v_src101, v_src201, weights1, weights2, weight_offset + 4);
v_float32x4 v_dst3 = blend(v_src111, v_src211, weights1, weights2, weight_offset + 4);
v_float32x4 v_dst4 = blend(v_src102, v_src202, weights1, weights2, weight_offset + 8);
v_float32x4 v_dst5 = blend(v_src112, v_src212, weights1, weights2, weight_offset + 8);
v_float32x4 v_dst6 = blend(v_src103, v_src203, weights1, weights2, weight_offset + 12);
v_float32x4 v_dst7 = blend(v_src113, v_src213, weights1, weights2, weight_offset + 12);
v_uint8x16 v_dsta = pack_f32tou8(v_dst0, v_dst2, v_dst4, v_dst6);
v_uint8x16 v_dstb = pack_f32tou8(v_dst1, v_dst3, v_dst5, v_dst7);
v_store_interleave(dst + x, v_dsta, v_dstb);
}
break;
case 3:
for(int weight_offset = 0 ; x <= width - step; x += step, weight_offset += weight_step)
{
v_uint8x16 v_src10, v_src11, v_src12, v_src20, v_src21, v_src22;
v_load_deinterleave(src1 + x, v_src10, v_src11, v_src12);
v_load_deinterleave(src2 + x, v_src20, v_src21, v_src22);
v_float32x4 v_src100, v_src101, v_src102, v_src103, v_src110, v_src111, v_src112, v_src113, v_src120, v_src121, v_src122, v_src123;
v_float32x4 v_src200, v_src201, v_src202, v_src203, v_src210, v_src211, v_src212, v_src213, v_src220, v_src221, v_src222, v_src223;
expand_u8tof32(v_src10, v_src100, v_src101, v_src102, v_src103);
expand_u8tof32(v_src11, v_src110, v_src111, v_src112, v_src113);
expand_u8tof32(v_src12, v_src120, v_src121, v_src122, v_src123);
expand_u8tof32(v_src20, v_src200, v_src201, v_src202, v_src203);
expand_u8tof32(v_src21, v_src210, v_src211, v_src212, v_src213);
expand_u8tof32(v_src22, v_src220, v_src221, v_src222, v_src223);
v_float32x4 v_w10 = v_load(weights1 + weight_offset);
v_float32x4 v_w11 = v_load(weights1 + weight_offset + 4);
v_float32x4 v_w12 = v_load(weights1 + weight_offset + 8);
v_float32x4 v_w13 = v_load(weights1 + weight_offset + 12);
v_float32x4 v_w20 = v_load(weights2 + weight_offset);
v_float32x4 v_w21 = v_load(weights2 + weight_offset + 4);
v_float32x4 v_w22 = v_load(weights2 + weight_offset + 8);
v_float32x4 v_w23 = v_load(weights2 + weight_offset + 12);
v_src100 = blend(v_src100, v_src200, v_w10, v_w20);
v_src110 = blend(v_src110, v_src210, v_w10, v_w20);
v_src120 = blend(v_src120, v_src220, v_w10, v_w20);
v_src101 = blend(v_src101, v_src201, v_w11, v_w21);
v_src111 = blend(v_src111, v_src211, v_w11, v_w21);
v_src121 = blend(v_src121, v_src221, v_w11, v_w21);
v_src102 = blend(v_src102, v_src202, v_w12, v_w22);
v_src112 = blend(v_src112, v_src212, v_w12, v_w22);
v_src122 = blend(v_src122, v_src222, v_w12, v_w22);
v_src103 = blend(v_src103, v_src203, v_w13, v_w23);
v_src113 = blend(v_src113, v_src213, v_w13, v_w23);
v_src123 = blend(v_src123, v_src223, v_w13, v_w23);
v_uint8x16 v_dst0 = pack_f32tou8(v_src100, v_src101, v_src102, v_src103);
v_uint8x16 v_dst1 = pack_f32tou8(v_src110, v_src111, v_src112, v_src113);
v_uint8x16 v_dst2 = pack_f32tou8(v_src120, v_src121, v_src122, v_src123);
v_store_interleave(dst + x, v_dst0, v_dst1, v_dst2);
}
break;
case 4:
step = v_uint8x16::nlanes;
weight_step = v_float32x4::nlanes;
for(int weight_offset = 0 ; x <= width - step; x += step, weight_offset += weight_step)
{
v_float32x4 v_src10, v_src11, v_src12, v_src13, v_src14, v_src15, v_src16, v_src17;
v_float32x4 v_src20, v_src21, v_src22, v_src23, v_src24, v_src25, v_src26, v_src27;
load_expand_u8tof32(src1 + x, v_src10, v_src11, v_src12, v_src13);
load_expand_u8tof32(src2 + x, v_src20, v_src21, v_src22, v_src23);
v_transpose4x4(v_src10, v_src11, v_src12, v_src13, v_src14, v_src15, v_src16, v_src17);
v_transpose4x4(v_src20, v_src21, v_src22, v_src23, v_src24, v_src25, v_src26, v_src27);
v_float32x4 v_w1 = v_load(weights1 + weight_offset);
v_float32x4 v_w2 = v_load(weights2 + weight_offset);
v_src10 = blend(v_src14, v_src24, v_w1, v_w2);
v_src11 = blend(v_src15, v_src25, v_w1, v_w2);
v_src12 = blend(v_src16, v_src26, v_w1, v_w2);
v_src13 = blend(v_src17, v_src27, v_w1, v_w2);
v_float32x4 v_dst0, v_dst1, v_dst2, v_dst3;
v_transpose4x4(v_src10, v_src11, v_src12, v_src13, v_dst0, v_dst1, v_dst2, v_dst3);
store_pack_f32tou8(dst + x, v_dst0, v_dst1, v_dst2, v_dst3);
}
break;
default:
break;
}
return x;
}
int blendLinearSimd128(const float* src1, const float* src2, const float* weights1, const float* weights2, float* dst, int x, int width, int cn)
{
int step = v_float32x4::nlanes*cn;
switch(cn)
{
case 1:
for(int weight_offset = 0 ; x <= width - step; x += step, weight_offset += v_float32x4::nlanes)
{
v_float32x4 v_src1 = v_load(src1 + x);
v_float32x4 v_src2 = v_load(src2 + x);
v_float32x4 v_w1 = v_load(weights1 + weight_offset);
v_float32x4 v_w2 = v_load(weights2 + weight_offset);
v_float32x4 v_dst = blend(v_src1, v_src2, v_w1, v_w2);
v_store(dst + x, v_dst);
}
break;
case 2:
for(int weight_offset = 0 ; x <= width - step; x += step, weight_offset += v_float32x4::nlanes)
{
v_float32x4 v_src10, v_src11, v_src20, v_src21;
v_load_deinterleave(src1 + x, v_src10, v_src11);
v_load_deinterleave(src2 + x, v_src20, v_src21);
v_float32x4 v_w1 = v_load(weights1 + weight_offset);
v_float32x4 v_w2 = v_load(weights2 + weight_offset);
v_float32x4 v_dst0 = blend(v_src10, v_src20, v_w1, v_w2);
v_float32x4 v_dst1 = blend(v_src11, v_src21, v_w1, v_w2);
v_store_interleave(dst + x, v_dst0, v_dst1);
}
break;
case 3:
for(int weight_offset = 0 ; x <= width - step; x += step, weight_offset += v_float32x4::nlanes)
{
v_float32x4 v_src10, v_src11, v_src12, v_src20, v_src21, v_src22;
v_load_deinterleave(src1 + x, v_src10, v_src11, v_src12);
v_load_deinterleave(src2 + x, v_src20, v_src21, v_src22);
v_float32x4 v_w1 = v_load(weights1 + weight_offset);
v_float32x4 v_w2 = v_load(weights2 + weight_offset);
v_float32x4 v_dst0 = blend(v_src10, v_src20, v_w1, v_w2);
v_float32x4 v_dst1 = blend(v_src11, v_src21, v_w1, v_w2);
v_float32x4 v_dst2 = blend(v_src12, v_src22, v_w1, v_w2);
v_store_interleave(dst + x, v_dst0, v_dst1, v_dst2);
}
break;
case 4:
for(int weight_offset = 0 ; x <= width - step; x += step, weight_offset += v_float32x4::nlanes)
{
v_float32x4 v_src10, v_src11, v_src12, v_src13, v_src20, v_src21, v_src22, v_src23;
v_load_deinterleave(src1 + x, v_src10, v_src11, v_src12, v_src13);
v_load_deinterleave(src2 + x, v_src20, v_src21, v_src22, v_src23);
v_float32x4 v_w1 = v_load(weights1 + weight_offset);
v_float32x4 v_w2 = v_load(weights2 + weight_offset);
v_float32x4 v_dst0 = blend(v_src10, v_src20, v_w1, v_w2);
v_float32x4 v_dst1 = blend(v_src11, v_src21, v_w1, v_w2);
v_float32x4 v_dst2 = blend(v_src12, v_src22, v_w1, v_w2);
v_float32x4 v_dst3 = blend(v_src13, v_src23, v_w1, v_w2);
v_store_interleave(dst + x, v_dst0, v_dst1, v_dst2, v_dst3);
}
break;
default:
break;
}
return x;
}
#endif
template <typename T>
class BlendLinearInvoker :
public ParallelLoopBody
{
public:
BlendLinearInvoker(const Mat & _src1, const Mat & _src2, const Mat & _weights1,
const Mat & _weights2, Mat & _dst) :
src1(&_src1), src2(&_src2), weights1(&_weights1), weights2(&_weights2), dst(&_dst)
{
}
virtual void operator() (const Range & range) const
{
int cn = src1->channels(), width = src1->cols * cn;
for (int y = range.start; y < range.end; ++y)
{
const float * const weights1_row = weights1->ptr<float>(y);
const float * const weights2_row = weights2->ptr<float>(y);
const T * const src1_row = src1->ptr<T>(y);
const T * const src2_row = src2->ptr<T>(y);
T * const dst_row = dst->ptr<T>(y);
int x = 0;
#if CV_SIMD128
x = blendLinearSimd128(src1_row, src2_row, weights1_row, weights2_row, dst_row, x, width, cn);
#endif
for ( ; x < width; ++x)
{
int x1 = x / cn;
float w1 = weights1_row[x1], w2 = weights2_row[x1];
float den = (w1 + w2 + 1e-5f);
float num = (src1_row[x] * w1 + src2_row[x] * w2);
dst_row[x] = saturate_cast<T>(num / den);
}
}
}
private:
const BlendLinearInvoker & operator= (const BlendLinearInvoker &);
BlendLinearInvoker(const BlendLinearInvoker &);
const Mat * src1, * src2, * weights1, * weights2;
Mat * dst;
};
#ifdef HAVE_OPENCL
static bool ocl_blendLinear( InputArray _src1, InputArray _src2, InputArray _weights1, InputArray _weights2, OutputArray _dst )
{
int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
char cvt[30];
ocl::Kernel k("blendLinear", ocl::imgproc::blend_linear_oclsrc,
format("-D T=%s -D cn=%d -D convertToT=%s", ocl::typeToStr(depth),
cn, ocl::convertTypeStr(CV_32F, depth, 1, cvt)));
if (k.empty())
return false;
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(), weights1 = _weights1.getUMat(),
weights2 = _weights2.getUMat(), dst = _dst.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(src1), ocl::KernelArg::ReadOnlyNoSize(src2),
ocl::KernelArg::ReadOnlyNoSize(weights1), ocl::KernelArg::ReadOnlyNoSize(weights2),
ocl::KernelArg::WriteOnly(dst));
size_t globalsize[2] = { (size_t)dst.cols, (size_t)dst.rows };
return k.run(2, globalsize, NULL, false);
}
#endif
}
void cv::blendLinear( InputArray _src1, InputArray _src2, InputArray _weights1, InputArray _weights2, OutputArray _dst )
{
CV_INSTRUMENT_REGION()
int type = _src1.type(), depth = CV_MAT_DEPTH(type);
Size size = _src1.size();
CV_Assert(depth == CV_8U || depth == CV_32F);
CV_Assert(size == _src2.size() && size == _weights1.size() && size == _weights2.size());
CV_Assert(type == _src2.type() && _weights1.type() == CV_32FC1 && _weights2.type() == CV_32FC1);
_dst.create(size, type);
CV_OCL_RUN(_dst.isUMat(),
ocl_blendLinear(_src1, _src2, _weights1, _weights2, _dst))
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), weights1 = _weights1.getMat(),
weights2 = _weights2.getMat(), dst = _dst.getMat();
if (depth == CV_8U)
{
BlendLinearInvoker<uchar> invoker(src1, src2, weights1, weights2, dst);
parallel_for_(Range(0, src1.rows), invoker, dst.total()/(double)(1<<16));
}
else if (depth == CV_32F)
{
BlendLinearInvoker<float> invoker(src1, src2, weights1, weights2, dst);
parallel_for_(Range(0, src1.rows), invoker, dst.total()/(double)(1<<16));
}
}