mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00

Added int32, int64 support and type inference to dnn #24411 **Added a type inference to dnn similar to the shape inference, added int32 and int64 support.** - Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type - Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types - All layers output blobs are now allocated using the calculated types from the type inference. - Inputs and constants with int32 and int64 types are not automatically converted into float32 now. - Added int32 and int64 support for all the layers with indexing and for all the layers required in tests. Added int32 and int64 support for CUDA: - Added host<->device data moving for int32 and int64 - Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates) Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model) **CURRENT PROBLEMS**: - ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102) - I didn't add type inference and int support to VULCAN, so it doesn't work at all now. - Some layers don't support int yet, so some unknown models may not work. **CURRENT WORKAROUNDS**: - CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion) - CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion - CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion) **DISABLED TESTS**: - RAFT model **REMOVED TESTS**: - Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant) **TODO IN NEXT PULL REQUESTS**: - Add int64 support for ONNX parser - Add int support for more layers - Add int support for OCL (currently int layers just run on CPU) - Add int tests - Add int support for other backends
207 lines
7.2 KiB
C++
207 lines
7.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "../precomp.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
#include "../op_cann.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/reshape.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
class BlankLayerImpl CV_FINAL : public BlankLayer
|
|
{
|
|
public:
|
|
BlankLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
return true;
|
|
#endif
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_CUDA ||
|
|
backendId == DNN_BACKEND_CANN;
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
return true;
|
|
}
|
|
|
|
void getTypes(const std::vector<MatType>& inputs,
|
|
const int requiredOutputs,
|
|
const int requiredInternals,
|
|
std::vector<MatType>& outputs,
|
|
std::vector<MatType>& internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size());
|
|
outputs = inputs;
|
|
}
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
inputs_.getUMatVector(inputs);
|
|
outputs_.getUMatVector(outputs);
|
|
|
|
for (int i = 0, n = outputs.size(); i < n; ++i)
|
|
{
|
|
void *src_handle = inputs[i].handle(ACCESS_READ);
|
|
void *dst_handle = outputs[i].handle(ACCESS_WRITE);
|
|
if (src_handle != dst_handle)
|
|
inputs[i].copyTo(outputs[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
size_t i, n = outputs.size();
|
|
for (i = 0; i < n; ++i)
|
|
if (outputs[i].data != inputs[i].data)
|
|
inputs[i].copyTo(outputs[i]);
|
|
}
|
|
|
|
#ifdef HAVE_CANN
|
|
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendWrapper> > &outputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
|
|
auto x_desc = x->getTensorDesc();
|
|
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
|
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
|
|
|
// create operator
|
|
auto op = std::make_shared<ge::op::Identity>(name);
|
|
|
|
// set inputs
|
|
op->set_input_x_by_name(*op_x, x->name.c_str());
|
|
op->update_input_desc_x(*x_desc);
|
|
|
|
// set output
|
|
op->update_output_desc_y(*output_desc);
|
|
|
|
return Ptr<BackendNode>(new CannBackendNode(op));
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
ngraph::OutputVector inp{ieInpNode};
|
|
auto blank = std::make_shared<ngraph::op::Concat>(inp, 0);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(blank));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
return make_cuda_node_with_type<cuda4dnn::ReshapeOp>(preferableTarget, inputs[0]->getHostMatDepth(), std::move(context->stream));
|
|
}
|
|
#endif
|
|
};
|
|
|
|
Ptr<Layer> BlankLayer::create(const LayerParams& params)
|
|
{
|
|
// In case of Caffe's Dropout layer from Faster-RCNN framework,
|
|
// https://github.com/rbgirshick/caffe-fast-rcnn/tree/faster-rcnn
|
|
// return Power layer.
|
|
if (!params.get<bool>("scale_train", true))
|
|
{
|
|
float scale = 1 - params.get<float>("dropout_ratio", 0.5f);
|
|
CV_Assert(scale > 0);
|
|
|
|
LayerParams powerParams;
|
|
powerParams.name = params.name;
|
|
powerParams.type = "Power";
|
|
powerParams.set("scale", scale);
|
|
|
|
return PowerLayer::create(powerParams);
|
|
}
|
|
else
|
|
return Ptr<BlankLayer>(new BlankLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|