mirror of
https://github.com/opencv/opencv.git
synced 2025-01-21 00:20:59 +08:00
0bd54a60e9
**Merge with contrib**: https://github.com/opencv/opencv_contrib/pull/3003 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV - [x] The PR is proposed to proper branch - [ ] There is reference to original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
186 lines
6.9 KiB
C++
186 lines
6.9 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
class GFTTDetector_Impl CV_FINAL : public GFTTDetector
|
|
{
|
|
public:
|
|
GFTTDetector_Impl( int _nfeatures, double _qualityLevel,
|
|
double _minDistance, int _blockSize, int _gradientSize,
|
|
bool _useHarrisDetector, double _k )
|
|
: nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance),
|
|
blockSize(_blockSize), gradSize(_gradientSize), useHarrisDetector(_useHarrisDetector), k(_k)
|
|
{
|
|
}
|
|
|
|
void read( const FileNode& fn) CV_OVERRIDE
|
|
{
|
|
// if node is empty, keep previous value
|
|
if (!fn["nfeatures"].empty())
|
|
fn["nfeatures"] >> nfeatures;
|
|
if (!fn["qualityLevel"].empty())
|
|
fn["qualityLevel"] >> qualityLevel;
|
|
if (!fn["minDistance"].empty())
|
|
fn["minDistance"] >> minDistance;
|
|
if (!fn["blockSize"].empty())
|
|
fn["blockSize"] >> blockSize;
|
|
if (!fn["gradSize"].empty())
|
|
fn["gradSize"] >> gradSize;
|
|
if (!fn["useHarrisDetector"].empty())
|
|
fn["useHarrisDetector"] >> useHarrisDetector;
|
|
if (!fn["k"].empty())
|
|
fn["k"] >> k;
|
|
}
|
|
void write( FileStorage& fs) const CV_OVERRIDE
|
|
{
|
|
if(fs.isOpened())
|
|
{
|
|
fs << "name" << getDefaultName();
|
|
fs << "nfeatures" << nfeatures;
|
|
fs << "qualityLevel" << qualityLevel;
|
|
fs << "minDistance" << minDistance;
|
|
fs << "blockSize" << blockSize;
|
|
fs << "gradSize" << gradSize;
|
|
fs << "useHarrisDetector" << useHarrisDetector;
|
|
fs << "k" << k;
|
|
}
|
|
}
|
|
|
|
void setMaxFeatures(int maxFeatures) CV_OVERRIDE { nfeatures = maxFeatures; }
|
|
int getMaxFeatures() const CV_OVERRIDE { return nfeatures; }
|
|
|
|
void setQualityLevel(double qlevel) CV_OVERRIDE { qualityLevel = qlevel; }
|
|
double getQualityLevel() const CV_OVERRIDE { return qualityLevel; }
|
|
|
|
void setMinDistance(double minDistance_) CV_OVERRIDE { minDistance = minDistance_; }
|
|
double getMinDistance() const CV_OVERRIDE { return minDistance; }
|
|
|
|
void setBlockSize(int blockSize_) CV_OVERRIDE { blockSize = blockSize_; }
|
|
int getBlockSize() const CV_OVERRIDE { return blockSize; }
|
|
|
|
void setGradientSize(int gradientSize_) CV_OVERRIDE { gradSize = gradientSize_; }
|
|
int getGradientSize() CV_OVERRIDE { return gradSize; }
|
|
|
|
void setHarrisDetector(bool val) CV_OVERRIDE { useHarrisDetector = val; }
|
|
bool getHarrisDetector() const CV_OVERRIDE { return useHarrisDetector; }
|
|
|
|
void setK(double k_) CV_OVERRIDE { k = k_; }
|
|
double getK() const CV_OVERRIDE { return k; }
|
|
|
|
void detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) CV_OVERRIDE
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
if(_image.empty())
|
|
{
|
|
keypoints.clear();
|
|
return;
|
|
}
|
|
|
|
std::vector<Point2f> corners;
|
|
std::vector<float> cornersQuality;
|
|
|
|
if (_image.isUMat())
|
|
{
|
|
UMat ugrayImage;
|
|
if( _image.type() != CV_8U )
|
|
cvtColor( _image, ugrayImage, COLOR_BGR2GRAY );
|
|
else
|
|
ugrayImage = _image.getUMat();
|
|
|
|
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
|
cornersQuality, blockSize, gradSize, useHarrisDetector, k );
|
|
}
|
|
else
|
|
{
|
|
Mat image = _image.getMat(), grayImage = image;
|
|
if( image.type() != CV_8U )
|
|
cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
|
|
|
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
|
cornersQuality, blockSize, gradSize, useHarrisDetector, k );
|
|
}
|
|
|
|
CV_Assert(corners.size() == cornersQuality.size());
|
|
|
|
keypoints.resize(corners.size());
|
|
for (size_t i = 0; i < corners.size(); i++)
|
|
keypoints[i] = KeyPoint(corners[i], (float)blockSize, -1, cornersQuality[i]);
|
|
|
|
}
|
|
|
|
int nfeatures;
|
|
double qualityLevel;
|
|
double minDistance;
|
|
int blockSize;
|
|
int gradSize;
|
|
bool useHarrisDetector;
|
|
double k;
|
|
};
|
|
|
|
|
|
Ptr<GFTTDetector> GFTTDetector::create( int _nfeatures, double _qualityLevel,
|
|
double _minDistance, int _blockSize, int _gradientSize,
|
|
bool _useHarrisDetector, double _k )
|
|
{
|
|
return makePtr<GFTTDetector_Impl>(_nfeatures, _qualityLevel,
|
|
_minDistance, _blockSize, _gradientSize, _useHarrisDetector, _k);
|
|
}
|
|
|
|
Ptr<GFTTDetector> GFTTDetector::create( int _nfeatures, double _qualityLevel,
|
|
double _minDistance, int _blockSize,
|
|
bool _useHarrisDetector, double _k )
|
|
{
|
|
return makePtr<GFTTDetector_Impl>(_nfeatures, _qualityLevel,
|
|
_minDistance, _blockSize, 3, _useHarrisDetector, _k);
|
|
}
|
|
|
|
String GFTTDetector::getDefaultName() const
|
|
{
|
|
return (Feature2D::getDefaultName() + ".GFTTDetector");
|
|
}
|
|
|
|
}
|