mirror of
https://github.com/opencv/opencv.git
synced 2025-01-16 04:50:53 +08:00
253 lines
8.0 KiB
C++
253 lines
8.0 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Wenju He, wenju@multicorewareinc.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/core/core.hpp"
|
|
using namespace std;
|
|
#ifdef HAVE_OPENCL
|
|
|
|
extern string workdir;
|
|
PARAM_TEST_CASE(HOG, cv::Size, int)
|
|
{
|
|
cv::Size winSize;
|
|
int type;
|
|
virtual void SetUp()
|
|
{
|
|
winSize = GET_PARAM(0);
|
|
type = GET_PARAM(1);
|
|
}
|
|
};
|
|
|
|
TEST_P(HOG, GetDescriptors)
|
|
{
|
|
// Load image
|
|
cv::Mat img_rgb = readImage(workdir + "lena.jpg");
|
|
ASSERT_FALSE(img_rgb.empty());
|
|
|
|
// Convert image
|
|
cv::Mat img;
|
|
switch (type)
|
|
{
|
|
case CV_8UC1:
|
|
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
|
break;
|
|
case CV_8UC4:
|
|
default:
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
break;
|
|
}
|
|
cv::ocl::oclMat d_img(img);
|
|
|
|
// HOGs
|
|
cv::ocl::HOGDescriptor ocl_hog;
|
|
ocl_hog.gamma_correction = true;
|
|
cv::HOGDescriptor hog;
|
|
hog.gammaCorrection = true;
|
|
|
|
// Compute descriptor
|
|
cv::ocl::oclMat d_descriptors;
|
|
ocl_hog.getDescriptors(d_img, ocl_hog.win_size, d_descriptors, ocl_hog.DESCR_FORMAT_COL_BY_COL);
|
|
cv::Mat down_descriptors;
|
|
d_descriptors.download(down_descriptors);
|
|
down_descriptors = down_descriptors.reshape(0, down_descriptors.cols * down_descriptors.rows);
|
|
|
|
hog.setSVMDetector(hog.getDefaultPeopleDetector());
|
|
std::vector<float> descriptors;
|
|
switch (type)
|
|
{
|
|
case CV_8UC1:
|
|
hog.compute(img, descriptors, ocl_hog.win_size);
|
|
break;
|
|
case CV_8UC4:
|
|
default:
|
|
hog.compute(img_rgb, descriptors, ocl_hog.win_size);
|
|
break;
|
|
}
|
|
cv::Mat cpu_descriptors(descriptors);
|
|
|
|
EXPECT_MAT_SIMILAR(down_descriptors, cpu_descriptors, 1e-2);
|
|
}
|
|
|
|
|
|
bool match_rect(cv::Rect r1, cv::Rect r2, int threshold)
|
|
{
|
|
return ((abs(r1.x - r2.x) < threshold) && (abs(r1.y - r2.y) < threshold) &&
|
|
(abs(r1.width - r2.width) < threshold) && (abs(r1.height - r2.height) < threshold));
|
|
}
|
|
|
|
TEST_P(HOG, Detect)
|
|
{
|
|
// Load image
|
|
cv::Mat img_rgb = readImage(workdir + "lena.jpg");
|
|
ASSERT_FALSE(img_rgb.empty());
|
|
|
|
// Convert image
|
|
cv::Mat img;
|
|
switch (type)
|
|
{
|
|
case CV_8UC1:
|
|
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
|
break;
|
|
case CV_8UC4:
|
|
default:
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
|
break;
|
|
}
|
|
cv::ocl::oclMat d_img(img);
|
|
|
|
// HOGs
|
|
if ((winSize != cv::Size(48, 96)) && (winSize != cv::Size(64, 128)))
|
|
winSize = cv::Size(64, 128);
|
|
cv::ocl::HOGDescriptor ocl_hog(winSize);
|
|
ocl_hog.gamma_correction = true;
|
|
|
|
cv::HOGDescriptor hog;
|
|
hog.winSize = winSize;
|
|
hog.gammaCorrection = true;
|
|
|
|
if (winSize.width == 48 && winSize.height == 96)
|
|
{
|
|
// daimler's base
|
|
ocl_hog.setSVMDetector(ocl_hog.getPeopleDetector48x96());
|
|
hog.setSVMDetector(hog.getDaimlerPeopleDetector());
|
|
}
|
|
else if (winSize.width == 64 && winSize.height == 128)
|
|
{
|
|
ocl_hog.setSVMDetector(ocl_hog.getPeopleDetector64x128());
|
|
hog.setSVMDetector(hog.getDefaultPeopleDetector());
|
|
}
|
|
else
|
|
{
|
|
ocl_hog.setSVMDetector(ocl_hog.getDefaultPeopleDetector());
|
|
hog.setSVMDetector(hog.getDefaultPeopleDetector());
|
|
}
|
|
|
|
// OpenCL detection
|
|
std::vector<cv::Rect> d_found;
|
|
ocl_hog.detectMultiScale(d_img, d_found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
|
|
|
// CPU detection
|
|
std::vector<cv::Rect> found;
|
|
switch (type)
|
|
{
|
|
case CV_8UC1:
|
|
hog.detectMultiScale(img, found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
|
break;
|
|
case CV_8UC4:
|
|
default:
|
|
hog.detectMultiScale(img_rgb, found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
|
break;
|
|
}
|
|
|
|
// Ground-truth rectangular people window
|
|
cv::Rect win1_64x128(231, 190, 72, 144);
|
|
cv::Rect win2_64x128(621, 156, 97, 194);
|
|
cv::Rect win1_48x96(238, 198, 63, 126);
|
|
cv::Rect win2_48x96(619, 161, 92, 185);
|
|
cv::Rect win3_48x96(488, 136, 56, 112);
|
|
|
|
// Compare whether ground-truth windows are detected and compare the number of windows detected.
|
|
std::vector<int> d_comp(4);
|
|
std::vector<int> comp(4);
|
|
for(int i = 0; i < (int)d_comp.size(); i++)
|
|
{
|
|
d_comp[i] = 0;
|
|
comp[i] = 0;
|
|
}
|
|
|
|
int threshold = 10;
|
|
int val = 32;
|
|
d_comp[0] = (int)d_found.size();
|
|
comp[0] = (int)found.size();
|
|
if (winSize == cv::Size(48, 96))
|
|
{
|
|
for(int i = 0; i < (int)d_found.size(); i++)
|
|
{
|
|
if (match_rect(d_found[i], win1_48x96, threshold))
|
|
d_comp[1] = val;
|
|
if (match_rect(d_found[i], win2_48x96, threshold))
|
|
d_comp[2] = val;
|
|
if (match_rect(d_found[i], win3_48x96, threshold))
|
|
d_comp[3] = val;
|
|
}
|
|
for(int i = 0; i < (int)found.size(); i++)
|
|
{
|
|
if (match_rect(found[i], win1_48x96, threshold))
|
|
comp[1] = val;
|
|
if (match_rect(found[i], win2_48x96, threshold))
|
|
comp[2] = val;
|
|
if (match_rect(found[i], win3_48x96, threshold))
|
|
comp[3] = val;
|
|
}
|
|
}
|
|
else if (winSize == cv::Size(64, 128))
|
|
{
|
|
for(int i = 0; i < (int)d_found.size(); i++)
|
|
{
|
|
if (match_rect(d_found[i], win1_64x128, threshold))
|
|
d_comp[1] = val;
|
|
if (match_rect(d_found[i], win2_64x128, threshold))
|
|
d_comp[2] = val;
|
|
}
|
|
for(int i = 0; i < (int)found.size(); i++)
|
|
{
|
|
if (match_rect(found[i], win1_64x128, threshold))
|
|
comp[1] = val;
|
|
if (match_rect(found[i], win2_64x128, threshold))
|
|
comp[2] = val;
|
|
}
|
|
}
|
|
|
|
EXPECT_MAT_NEAR(cv::Mat(d_comp), cv::Mat(comp), 3);
|
|
}
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, HOG, testing::Combine(
|
|
testing::Values(cv::Size(64, 128), cv::Size(48, 96)),
|
|
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4))));
|
|
|
|
|
|
#endif //HAVE_OPENCL
|