mirror of
https://github.com/opencv/opencv.git
synced 2025-01-23 01:53:13 +08:00
7634 lines
218 KiB
XML
7634 lines
218 KiB
XML
<?xml version="1.0"?>
|
||
<!--
|
||
12x20 Left ear (in the image) detector computed with 5000 positive and 15000 negative samples
|
||
2011-present, Modesto Castrillon-Santana (SIANI, Universidad de Las Palmas de Gran Canaria, Spain.
|
||
|
||
COMMERCIAL USE:
|
||
If you have any commercial interest in this work contact mcastrillon@iusiani.ulpgc.es
|
||
|
||
Creative Commons Attribution-NonCommercial 4.0 International Public License
|
||
|
||
By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International
|
||
Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these
|
||
terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and
|
||
conditions.
|
||
|
||
Section 1 Definitions.
|
||
|
||
Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public
|
||
License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
|
||
Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public
|
||
License.
|
||
Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
|
||
Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
|
||
Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
|
||
Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
|
||
Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
|
||
Licensor means the individual(s) or entity(ies) granting rights under this Public License.
|
||
NonCommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange.
|
||
Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
|
||
Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
|
||
You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.
|
||
|
||
Section 2 Scope.
|
||
|
||
License grant.
|
||
Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
|
||
reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and
|
||
produce, reproduce, and Share Adapted Material for NonCommercial purposes only.
|
||
Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
|
||
Term. The term of this Public License is specified in Section 6(a).
|
||
Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
|
||
Downstream recipients.
|
||
Offer from the Licensor Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
|
||
No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
|
||
No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).
|
||
|
||
Other rights.
|
||
Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
|
||
Patent and trademark rights are not licensed under this Public License.
|
||
To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes.
|
||
|
||
Section 3 License Conditions.
|
||
|
||
Your exercise of the Licensed Rights is expressly made subject to the following conditions.
|
||
|
||
Attribution.
|
||
|
||
If You Share the Licensed Material (including in modified form), You must:
|
||
retain the following if it is supplied by the Licensor with the Licensed Material:
|
||
identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
|
||
a copyright notice;
|
||
a notice that refers to this Public License;
|
||
a notice that refers to the disclaimer of warranties;
|
||
a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
|
||
in any publication cite the following paper:
|
||
@INPROCEEDINGS{Castrillon11-caepia,
|
||
author = "Castrill\'on Santana, M. and Lorenzo Navarro, J. and Hern\'andez Sosa, D. ",
|
||
title = "An Study on Ear Detection and its Applications to Face Detection",
|
||
booktitle = "Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA)",
|
||
year = "2011",
|
||
month = "November",
|
||
address = "La Laguna, Spain",
|
||
}
|
||
indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
|
||
indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
|
||
You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
|
||
If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
|
||
If You Share Adapted Material You produce, the Adapter's License You apply must not prevent recipients of the Adapted Material from complying with this Public License.
|
||
|
||
Section 4 Sui Generis Database Rights.
|
||
|
||
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:
|
||
|
||
for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only;
|
||
if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and
|
||
You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.
|
||
|
||
For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.
|
||
|
||
Section 5 Disclaimer of Warranties and Limitation of Liability.
|
||
|
||
Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.
|
||
To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.
|
||
|
||
The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.
|
||
|
||
Section 6 Term and Termination.
|
||
|
||
This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.
|
||
|
||
Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
|
||
automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
|
||
upon express reinstatement by the Licensor.
|
||
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
|
||
For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
|
||
Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
|
||
|
||
Section 7 Other Terms and Conditions.
|
||
|
||
The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
|
||
Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.
|
||
|
||
Section 8 Interpretation.
|
||
|
||
For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
|
||
To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
|
||
No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
|
||
Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.
|
||
-->
|
||
<opencv_storage>
|
||
<cascade type_id="opencv-cascade-classifier"><stageType>BOOST</stageType>
|
||
<featureType>HAAR</featureType>
|
||
<height>12</height>
|
||
<width>20</width>
|
||
<stageParams>
|
||
<maxWeakCount>65</maxWeakCount></stageParams>
|
||
<featureParams>
|
||
<maxCatCount>0</maxCatCount></featureParams>
|
||
<stageNum>20</stageNum>
|
||
<stages>
|
||
<_>
|
||
<maxWeakCount>7</maxWeakCount>
|
||
<stageThreshold>-1.6897829771041870e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 0 1.2798480689525604e-01</internalNodes>
|
||
<leafValues>
|
||
-7.1108317375183105e-01 8.3952748775482178e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 1 5.0366270443191752e-05</internalNodes>
|
||
<leafValues>
|
||
-7.7958387136459351e-01 4.1161769628524780e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 2 -1.1398220434784889e-02</internalNodes>
|
||
<leafValues>
|
||
5.5991190671920776e-01 -5.2993881702423096e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 3 2.8897399082779884e-02</internalNodes>
|
||
<leafValues>
|
||
-9.6023030579090118e-02 1.8446889519691467e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 4 -5.7543441653251648e-03</internalNodes>
|
||
<leafValues>
|
||
3.9083909988403320e-01 -7.0798218250274658e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 5 1.2758660130202770e-02</internalNodes>
|
||
<leafValues>
|
||
-7.6031517982482910e-01 2.6452711224555969e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 6 -4.1698651330079883e-05</internalNodes>
|
||
<leafValues>
|
||
3.2332289218902588e-01 -5.7402020692825317e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>12</maxWeakCount>
|
||
<stageThreshold>-1.6203830242156982e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 7 1.7598830163478851e-01</internalNodes>
|
||
<leafValues>
|
||
-5.9234100580215454e-01 7.8493958711624146e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 8 3.8594089448451996e-02</internalNodes>
|
||
<leafValues>
|
||
-6.8187582492828369e-01 3.8166061043739319e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 9 1.2052910029888153e-01</internalNodes>
|
||
<leafValues>
|
||
-3.7438058853149414e-01 5.2112519741058350e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 10 2.1304990351200104e-01</internalNodes>
|
||
<leafValues>
|
||
9.7819166257977486e-03 -6.5798282623291016e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 11 -1.9179080426692963e-01</internalNodes>
|
||
<leafValues>
|
||
8.8993859291076660e-01 -2.3742930591106415e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 12 3.7649259902536869e-03</internalNodes>
|
||
<leafValues>
|
||
-9.2071659862995148e-02 1.5995720028877258e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 13 -7.4397800490260124e-03</internalNodes>
|
||
<leafValues>
|
||
3.5091850161552429e-01 -5.2880358695983887e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 14 8.1300012767314911e-02</internalNodes>
|
||
<leafValues>
|
||
4.7027029097080231e-02 -4.8141419887542725e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 15 7.9818956553936005e-02</internalNodes>
|
||
<leafValues>
|
||
-3.0336898565292358e-01 5.7992082834243774e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 16 3.9260480552911758e-02</internalNodes>
|
||
<leafValues>
|
||
-6.1189621686935425e-01 2.4700529873371124e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 17 -8.6981123313307762e-03</internalNodes>
|
||
<leafValues>
|
||
3.0427950620651245e-01 -4.3165320158004761e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 18 5.5766489822417498e-05</internalNodes>
|
||
<leafValues>
|
||
-5.4995632171630859e-01 2.4196259677410126e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>20</maxWeakCount>
|
||
<stageThreshold>-2.1234118938446045e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 19 1.9991339743137360e-01</internalNodes>
|
||
<leafValues>
|
||
-5.1076048612594604e-01 7.2653311491012573e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 20 -1.6032690473366529e-04</internalNodes>
|
||
<leafValues>
|
||
1.1732880026102066e-01 -1.9851410388946533e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 21 6.2459441833198071e-03</internalNodes>
|
||
<leafValues>
|
||
-6.2454998493194580e-01 4.1317841410636902e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 22 5.5343401618301868e-03</internalNodes>
|
||
<leafValues>
|
||
-8.2238370180130005e-01 2.2600589692592621e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 23 1.0757610201835632e-01</internalNodes>
|
||
<leafValues>
|
||
-5.5525738000869751e-01 4.3564280867576599e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 24 -9.9556613713502884e-03</internalNodes>
|
||
<leafValues>
|
||
2.9808950424194336e-01 -3.0220919847488403e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 25 -4.8354369937442243e-05</internalNodes>
|
||
<leafValues>
|
||
4.4047379493713379e-01 -6.6946560144424438e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 26 1.9743980374187231e-04</internalNodes>
|
||
<leafValues>
|
||
-2.5094148516654968e-01 1.9814400374889374e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 27 -4.4098760554334149e-05</internalNodes>
|
||
<leafValues>
|
||
3.0689230561256409e-01 -6.6775608062744141e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 28 -1.7941730096936226e-02</internalNodes>
|
||
<leafValues>
|
||
2.7399578690528870e-01 -2.9671499133110046e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 29 5.3291041695047170e-05</internalNodes>
|
||
<leafValues>
|
||
-6.7100298404693604e-01 2.4690890312194824e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 30 6.4407112076878548e-03</internalNodes>
|
||
<leafValues>
|
||
-5.2723282575607300e-01 2.4782879650592804e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 31 -4.9925990402698517e-02</internalNodes>
|
||
<leafValues>
|
||
8.2168322801589966e-01 -2.4012729525566101e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 32 2.4148030206561089e-03</internalNodes>
|
||
<leafValues>
|
||
-3.8689721375703812e-02 1.9318090379238129e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 33 6.2534123659133911e-02</internalNodes>
|
||
<leafValues>
|
||
-4.1077169775962830e-01 6.0665780305862427e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 34 8.8917986431624740e-05</internalNodes>
|
||
<leafValues>
|
||
-6.7601591348648071e-01 3.1252190470695496e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 35 -2.2447909577749670e-04</internalNodes>
|
||
<leafValues>
|
||
1.8520550429821014e-01 -7.7942901849746704e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 36 1.8156330042984337e-04</internalNodes>
|
||
<leafValues>
|
||
-6.6956442594528198e-01 1.5837380290031433e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 37 5.0366270443191752e-05</internalNodes>
|
||
<leafValues>
|
||
-4.6770051121711731e-01 2.4539180099964142e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 38 6.0776848840760067e-05</internalNodes>
|
||
<leafValues>
|
||
-6.8354898691177368e-01 1.8664689362049103e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>12</maxWeakCount>
|
||
<stageThreshold>-1.4351799488067627e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 39 1.5990820527076721e-01</internalNodes>
|
||
<leafValues>
|
||
-6.2714368104934692e-01 7.2424608469009399e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 40 7.6372842304408550e-03</internalNodes>
|
||
<leafValues>
|
||
8.7740488350391388e-02 -5.2430278062820435e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 41 6.0625150799751282e-03</internalNodes>
|
||
<leafValues>
|
||
-4.3119868636131287e-01 4.6857520937919617e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 42 2.5897640734910965e-02</internalNodes>
|
||
<leafValues>
|
||
1.5866510570049286e-02 -6.5979748964309692e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 43 5.8885440230369568e-02</internalNodes>
|
||
<leafValues>
|
||
-2.1157009899616241e-01 6.7942970991134644e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 44 1.1850179731845856e-01</internalNodes>
|
||
<leafValues>
|
||
-1.0366249829530716e-01 7.4645912647247314e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 45 -1.6655250219628215e-03</internalNodes>
|
||
<leafValues>
|
||
-6.7015552520751953e-01 2.2192029654979706e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 46 -4.4783479097532108e-05</internalNodes>
|
||
<leafValues>
|
||
2.5404050946235657e-01 -4.9562969803810120e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 47 -8.3481962792575359e-04</internalNodes>
|
||
<leafValues>
|
||
-7.3370438814163208e-01 2.0266470313072205e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 48 -9.3157468363642693e-03</internalNodes>
|
||
<leafValues>
|
||
-7.3412007093429565e-01 7.2000503540039062e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 49 -2.9555149376392365e-02</internalNodes>
|
||
<leafValues>
|
||
5.1195901632308960e-01 -2.5446298718452454e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 50 -7.9029072076082230e-03</internalNodes>
|
||
<leafValues>
|
||
-5.3299552202224731e-01 8.8295362889766693e-02</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>12</maxWeakCount>
|
||
<stageThreshold>-1.3800990581512451e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 51 9.8843306303024292e-02</internalNodes>
|
||
<leafValues>
|
||
-5.0631648302078247e-01 6.3027667999267578e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 52 -4.2210938408970833e-03</internalNodes>
|
||
<leafValues>
|
||
1.7837150394916534e-01 -3.3268490433692932e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 53 2.9967099428176880e-02</internalNodes>
|
||
<leafValues>
|
||
-4.5201331377029419e-01 4.6473979949951172e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 54 -1.6702869534492493e-01</internalNodes>
|
||
<leafValues>
|
||
8.0514347553253174e-01 -4.0616780519485474e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 55 1.9976759329438210e-02</internalNodes>
|
||
<leafValues>
|
||
2.0976160466670990e-01 -7.3149591684341431e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 56 8.1860616803169250e-02</internalNodes>
|
||
<leafValues>
|
||
-5.4268407821655273e-01 2.1634259819984436e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 57 1.2709829956293106e-02</internalNodes>
|
||
<leafValues>
|
||
-2.4989350140094757e-01 4.7262668609619141e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 58 -3.4979879856109619e-02</internalNodes>
|
||
<leafValues>
|
||
3.0420958995819092e-01 -3.5224550962448120e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 59 -1.3223739806562662e-03</internalNodes>
|
||
<leafValues>
|
||
-6.9712251424789429e-01 1.6912660002708435e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 60 -2.3282319307327271e-02</internalNodes>
|
||
<leafValues>
|
||
3.3972018957138062e-01 -3.6639729142189026e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 61 -1.5517599880695343e-01</internalNodes>
|
||
<leafValues>
|
||
7.3445862531661987e-01 -1.8277870118618011e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 62 -3.9222039282321930e-02</internalNodes>
|
||
<leafValues>
|
||
3.5923731327056885e-01 -1.1233209818601608e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>37</maxWeakCount>
|
||
<stageThreshold>-2.0749111175537109e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 63 6.2616936862468719e-02</internalNodes>
|
||
<leafValues>
|
||
-4.8533481359481812e-01 6.1538851261138916e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 64 1.1619539931416512e-02</internalNodes>
|
||
<leafValues>
|
||
-5.7667458057403564e-01 3.8557919859886169e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 65 -5.7566948235034943e-03</internalNodes>
|
||
<leafValues>
|
||
2.6634719967842102e-01 -8.2090580463409424e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 66 9.2315487563610077e-03</internalNodes>
|
||
<leafValues>
|
||
-8.0720931291580200e-01 2.0323330163955688e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 67 -3.3656319137662649e-03</internalNodes>
|
||
<leafValues>
|
||
2.0334909856319427e-01 -7.4802142381668091e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 68 1.2655390310101211e-04</internalNodes>
|
||
<leafValues>
|
||
-5.8880287408828735e-01 1.7631030082702637e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 69 1.0345769673585892e-01</internalNodes>
|
||
<leafValues>
|
||
-4.2211589217185974e-01 3.3677190542221069e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 70 -1.7050839960575104e-04</internalNodes>
|
||
<leafValues>
|
||
1.8885380029678345e-01 -2.6626259088516235e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 71 1.1793050362030044e-04</internalNodes>
|
||
<leafValues>
|
||
-7.1056002378463745e-01 2.2684849798679352e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 72 -9.7460933029651642e-02</internalNodes>
|
||
<leafValues>
|
||
4.2451021075248718e-01 -3.9501309394836426e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 73 -1.7512679100036621e-02</internalNodes>
|
||
<leafValues>
|
||
3.6552980542182922e-01 -3.5724669694900513e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 74 1.7156290414277464e-04</internalNodes>
|
||
<leafValues>
|
||
-3.1259360909461975e-01 1.1446060240268707e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 75 8.5574887692928314e-02</internalNodes>
|
||
<leafValues>
|
||
-2.0559160411357880e-01 8.9941620826721191e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 76 1.1759579647332430e-03</internalNodes>
|
||
<leafValues>
|
||
-7.5939810276031494e-01 2.1389579772949219e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 77 8.8068292825482786e-05</internalNodes>
|
||
<leafValues>
|
||
-6.0090541839599609e-01 2.5762718915939331e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 78 2.3003520618658513e-04</internalNodes>
|
||
<leafValues>
|
||
-4.1466540098190308e-01 2.3084460198879242e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 79 -3.4361891448497772e-04</internalNodes>
|
||
<leafValues>
|
||
3.2730078697204590e-01 -7.4609941244125366e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 80 1.5595999546349049e-02</internalNodes>
|
||
<leafValues>
|
||
-3.6050570011138916e-01 1.9414800405502319e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 81 -6.5029867982957512e-05</internalNodes>
|
||
<leafValues>
|
||
3.4985640645027161e-01 -5.5353438854217529e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 82 8.0799087299965322e-05</internalNodes>
|
||
<leafValues>
|
||
-4.1298541426658630e-01 2.9194280505180359e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 83 -1.7670560628175735e-02</internalNodes>
|
||
<leafValues>
|
||
5.6811487674713135e-01 -3.0118390917778015e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 84 5.2467430941760540e-03</internalNodes>
|
||
<leafValues>
|
||
-3.9970070123672485e-01 2.5405979156494141e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 85 2.7624730137176812e-04</internalNodes>
|
||
<leafValues>
|
||
-4.6306419372558594e-01 2.7200910449028015e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 86 -7.6283427188172936e-04</internalNodes>
|
||
<leafValues>
|
||
4.7710940241813660e-01 -2.8456479310989380e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 87 5.4720909247407690e-05</internalNodes>
|
||
<leafValues>
|
||
-5.9415602684020996e-01 2.8456559777259827e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 88 -5.8523961342871189e-05</internalNodes>
|
||
<leafValues>
|
||
1.8699720501899719e-01 -2.9498028755187988e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 89 -2.3030990269035101e-04</internalNodes>
|
||
<leafValues>
|
||
3.1419369578361511e-01 -5.2966248989105225e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 90 1.2743050465360284e-03</internalNodes>
|
||
<leafValues>
|
||
-3.4386789798736572e-01 2.7126389741897583e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 91 1.1066290317103267e-03</internalNodes>
|
||
<leafValues>
|
||
-4.5228588581085205e-01 2.4860590696334839e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 92 -1.4225989580154419e-03</internalNodes>
|
||
<leafValues>
|
||
3.3848088979721069e-01 -4.1214609146118164e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 93 1.8614599481225014e-02</internalNodes>
|
||
<leafValues>
|
||
-1.9110870361328125e-01 6.4115452766418457e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 94 4.5832890464225784e-05</internalNodes>
|
||
<leafValues>
|
||
-5.8493572473526001e-01 2.5314238667488098e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 95 -9.9875287560280412e-05</internalNodes>
|
||
<leafValues>
|
||
3.6051398515701294e-01 -5.3231191635131836e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 96 -1.1277929879724979e-02</internalNodes>
|
||
<leafValues>
|
||
2.7766379714012146e-01 -2.4176590144634247e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 97 -1.5279600024223328e-01</internalNodes>
|
||
<leafValues>
|
||
8.3433318138122559e-01 -1.8692030012607574e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 98 -3.6294270306825638e-02</internalNodes>
|
||
<leafValues>
|
||
3.9919948577880859e-01 -4.1119259595870972e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 99 -4.5436818152666092e-02</internalNodes>
|
||
<leafValues>
|
||
6.8093067407608032e-01 -1.4669400453567505e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>13</maxWeakCount>
|
||
<stageThreshold>-1.8404649496078491e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 100 1.6328740119934082e-01</internalNodes>
|
||
<leafValues>
|
||
-6.0435330867767334e-01 5.5052411556243896e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 101 9.7092619398608804e-05</internalNodes>
|
||
<leafValues>
|
||
-9.0228801965713501e-01 2.6281669735908508e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 102 -2.7205731021240354e-04</internalNodes>
|
||
<leafValues>
|
||
2.8341010212898254e-01 -8.1372922658920288e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 103 1.8128680530935526e-03</internalNodes>
|
||
<leafValues>
|
||
-8.3362382650375366e-01 2.1307690441608429e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 104 -8.7052993476390839e-03</internalNodes>
|
||
<leafValues>
|
||
2.8303650021553040e-01 -7.2392731904983521e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 105 -5.6872398999985307e-05</internalNodes>
|
||
<leafValues>
|
||
1.3844889402389526e-01 -5.0287842750549316e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 106 3.7435539066791534e-02</internalNodes>
|
||
<leafValues>
|
||
-1.0564589872956276e-02 -1.5556719970703125e+03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 107 1.5324270352721214e-02</internalNodes>
|
||
<leafValues>
|
||
1.3988590240478516e-01 -6.1316817998886108e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 108 2.1410979330539703e-02</internalNodes>
|
||
<leafValues>
|
||
-2.2393199801445007e-01 5.6233572959899902e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 109 1.9795040134340525e-04</internalNodes>
|
||
<leafValues>
|
||
-2.3459529876708984e-01 1.3877849280834198e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 110 -5.1461639814078808e-03</internalNodes>
|
||
<leafValues>
|
||
-8.9666271209716797e-01 1.4354419708251953e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 111 -3.3491749316453934e-02</internalNodes>
|
||
<leafValues>
|
||
8.1797057390213013e-01 -8.1737898290157318e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 112 -7.3674921877682209e-03</internalNodes>
|
||
<leafValues>
|
||
-6.5259951353073120e-01 1.7211680114269257e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>20</maxWeakCount>
|
||
<stageThreshold>-1.3563539981842041e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 113 7.3508180677890778e-02</internalNodes>
|
||
<leafValues>
|
||
-4.6614921092987061e-01 5.0694358348846436e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 114 8.5386466234922409e-03</internalNodes>
|
||
<leafValues>
|
||
-2.4482139945030212e-01 6.0921180248260498e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 115 2.2265550494194031e-01</internalNodes>
|
||
<leafValues>
|
||
-2.3087610304355621e-01 4.4181710481643677e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 116 7.4994042515754700e-02</internalNodes>
|
||
<leafValues>
|
||
1.1506160348653793e-01 -5.5417829751968384e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 117 -1.6755120456218719e-01</internalNodes>
|
||
<leafValues>
|
||
7.4653017520904541e-01 -1.3431079685688019e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 118 -2.4138720706105232e-02</internalNodes>
|
||
<leafValues>
|
||
-4.9592089653015137e-01 6.2578730285167694e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 119 1.1620320379734039e-02</internalNodes>
|
||
<leafValues>
|
||
-1.7977459728717804e-01 5.6873577833175659e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 120 4.8821419477462769e-02</internalNodes>
|
||
<leafValues>
|
||
4.2774148285388947e-02 -6.0440838336944580e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 121 3.5715501755475998e-02</internalNodes>
|
||
<leafValues>
|
||
-2.0169410109519958e-01 5.1855558156967163e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 122 -1.7011469230055809e-02</internalNodes>
|
||
<leafValues>
|
||
-6.6163742542266846e-01 4.5137479901313782e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 123 -1.6027579084038734e-02</internalNodes>
|
||
<leafValues>
|
||
5.4205197095870972e-01 -1.8311430513858795e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 124 9.6712950617074966e-03</internalNodes>
|
||
<leafValues>
|
||
3.4085698425769806e-02 -3.6544409394264221e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 125 -1.0325650218874216e-03</internalNodes>
|
||
<leafValues>
|
||
-7.0559221506118774e-01 1.2839829921722412e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 126 -5.7438347721472383e-04</internalNodes>
|
||
<leafValues>
|
||
2.0413300395011902e-01 -4.6021059155464172e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 127 1.2579349568113685e-03</internalNodes>
|
||
<leafValues>
|
||
1.9696569442749023e-01 -4.9659618735313416e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 128 -2.3272659629583359e-02</internalNodes>
|
||
<leafValues>
|
||
-6.4083862304687500e-01 -1.3145440258085728e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 129 -4.8163738101720810e-03</internalNodes>
|
||
<leafValues>
|
||
-7.4635922908782959e-01 1.1569319665431976e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 130 2.6880908990278840e-04</internalNodes>
|
||
<leafValues>
|
||
-1.7020240426063538e-01 1.0989090055227280e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 131 -9.1302618384361267e-03</internalNodes>
|
||
<leafValues>
|
||
-8.6084252595901489e-01 1.0507579892873764e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 132 1.5290869772434235e-01</internalNodes>
|
||
<leafValues>
|
||
-3.0442950129508972e-01 2.9691061377525330e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>27</maxWeakCount>
|
||
<stageThreshold>-1.4800649881362915e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 133 1.0870260000228882e-01</internalNodes>
|
||
<leafValues>
|
||
-3.9208391308784485e-01 4.2441639304161072e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 134 -8.5436011431738734e-05</internalNodes>
|
||
<leafValues>
|
||
1.1648490279912949e-01 -1.2261509895324707e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 135 8.7897274643182755e-03</internalNodes>
|
||
<leafValues>
|
||
-2.2223709523677826e-01 5.8239942789077759e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 136 1.9092390313744545e-02</internalNodes>
|
||
<leafValues>
|
||
-2.8222650289535522e-01 3.4780630469322205e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 137 -1.4692190103232861e-02</internalNodes>
|
||
<leafValues>
|
||
2.4436180293560028e-01 -4.4442260265350342e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 138 1.7424240708351135e-02</internalNodes>
|
||
<leafValues>
|
||
3.9642699062824249e-02 -5.0866502523422241e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 139 6.9210886955261230e-02</internalNodes>
|
||
<leafValues>
|
||
-1.5061080455780029e-01 5.4918211698532104e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 140 1.1516460031270981e-01</internalNodes>
|
||
<leafValues>
|
||
4.7058542259037495e-03 -6.0872167348861694e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 141 -9.0783968567848206e-02</internalNodes>
|
||
<leafValues>
|
||
7.6661890745162964e-01 -1.1532770097255707e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 142 9.3459866940975189e-02</internalNodes>
|
||
<leafValues>
|
||
7.7324211597442627e-02 -7.2869849205017090e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 143 1.4063410460948944e-01</internalNodes>
|
||
<leafValues>
|
||
-3.0280780792236328e-01 2.9996991157531738e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 144 7.5702848844230175e-03</internalNodes>
|
||
<leafValues>
|
||
-2.5590381026268005e-01 3.4416630864143372e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 145 8.1542655825614929e-03</internalNodes>
|
||
<leafValues>
|
||
1.2018810212612152e-01 -8.5254168510437012e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 146 8.7357666343450546e-03</internalNodes>
|
||
<leafValues>
|
||
-1.2177339941263199e-01 8.2226127386093140e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 147 -6.9444780237972736e-03</internalNodes>
|
||
<leafValues>
|
||
-6.1111962795257568e-01 1.3486449420452118e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 148 -4.3000229634344578e-03</internalNodes>
|
||
<leafValues>
|
||
-3.4730020165443420e-01 4.4554490596055984e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 149 4.0720161050558090e-02</internalNodes>
|
||
<leafValues>
|
||
-1.2618629634380341e-01 6.0286152362823486e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 150 -1.0009969584643841e-02</internalNodes>
|
||
<leafValues>
|
||
-4.5014089345932007e-01 1.8092009425163269e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 151 1.1742020025849342e-02</internalNodes>
|
||
<leafValues>
|
||
8.1721372902393341e-02 -8.0739098787307739e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 152 -9.7789859864860773e-04</internalNodes>
|
||
<leafValues>
|
||
6.6041916608810425e-02 -1.4142000675201416e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 153 3.4487970173358917e-02</internalNodes>
|
||
<leafValues>
|
||
1.0488150268793106e-01 -7.1635431051254272e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 154 -2.4215620011091232e-02</internalNodes>
|
||
<leafValues>
|
||
-5.9454482793807983e-01 1.2400969862937927e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 155 -3.7082370370626450e-02</internalNodes>
|
||
<leafValues>
|
||
6.5830427408218384e-01 -1.2158200144767761e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 156 -4.3632909655570984e-03</internalNodes>
|
||
<leafValues>
|
||
-6.5290719270706177e-01 1.2228529900312424e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 157 -4.1692638769745827e-03</internalNodes>
|
||
<leafValues>
|
||
-7.3107779026031494e-01 7.7946297824382782e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 158 6.0636870563030243e-02</internalNodes>
|
||
<leafValues>
|
||
-1.3061979785561562e-02 -8.0408149957656860e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 159 1.5371589921414852e-02</internalNodes>
|
||
<leafValues>
|
||
7.9872779548168182e-02 -8.5363340377807617e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>25</maxWeakCount>
|
||
<stageThreshold>-1.3590339422225952e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 160 1.5033720061182976e-02</internalNodes>
|
||
<leafValues>
|
||
-5.3333657979965210e-01 3.4096190333366394e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 161 -8.9624240994453430e-02</internalNodes>
|
||
<leafValues>
|
||
1.8991500139236450e-01 -2.1448349952697754e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 162 -5.1495251245796680e-03</internalNodes>
|
||
<leafValues>
|
||
3.6764401197433472e-01 -3.1621339917182922e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 163 5.6887358427047729e-02</internalNodes>
|
||
<leafValues>
|
||
-2.7120190858840942e-01 3.4590399265289307e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 164 -1.2673810124397278e-01</internalNodes>
|
||
<leafValues>
|
||
8.4647309780120850e-01 -6.7630723118782043e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 165 -1.0681120306253433e-01</internalNodes>
|
||
<leafValues>
|
||
-2.8982621431350708e-01 8.3181828260421753e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 166 1.7475779354572296e-01</internalNodes>
|
||
<leafValues>
|
||
-3.5948398709297180e-01 3.1073129177093506e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 167 -2.4629090912640095e-03</internalNodes>
|
||
<leafValues>
|
||
-6.7824071645736694e-01 1.1908339709043503e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 168 6.6053359769284725e-03</internalNodes>
|
||
<leafValues>
|
||
-2.4560730159282684e-01 3.7791371345520020e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 169 1.0148379806196317e-04</internalNodes>
|
||
<leafValues>
|
||
-1.0097169876098633e-01 8.2711093127727509e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 170 -1.8523789942264557e-02</internalNodes>
|
||
<leafValues>
|
||
-4.4592261314392090e-01 1.6946080327033997e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 171 3.6602010950446129e-03</internalNodes>
|
||
<leafValues>
|
||
-1.0477670282125473e-01 9.4992779195308685e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 172 -1.0257829912006855e-02</internalNodes>
|
||
<leafValues>
|
||
4.3351659178733826e-01 -1.6978879272937775e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 173 -9.8685777629725635e-05</internalNodes>
|
||
<leafValues>
|
||
1.7843760550022125e-01 -2.6428279280662537e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 174 -1.2446290347725153e-03</internalNodes>
|
||
<leafValues>
|
||
-7.2253531217575073e-01 1.0615690052509308e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 175 1.1974680091952905e-04</internalNodes>
|
||
<leafValues>
|
||
-3.0318620800971985e-01 1.4623160660266876e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 176 1.2079760199412704e-03</internalNodes>
|
||
<leafValues>
|
||
1.3531659543514252e-01 -5.0457692146301270e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 177 -1.9425910711288452e-01</internalNodes>
|
||
<leafValues>
|
||
-7.1733701229095459e-01 8.0573573708534241e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 178 1.8599320203065872e-02</internalNodes>
|
||
<leafValues>
|
||
-1.6972489655017853e-01 4.2669999599456787e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 179 3.0704800039529800e-02</internalNodes>
|
||
<leafValues>
|
||
3.2838109880685806e-02 -7.2923952341079712e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 180 2.1680949255824089e-02</internalNodes>
|
||
<leafValues>
|
||
-1.6750890016555786e-01 4.4789049029350281e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 181 5.5604660883545876e-03</internalNodes>
|
||
<leafValues>
|
||
9.6391409635543823e-02 -6.6830247640609741e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 182 -5.6784078478813171e-03</internalNodes>
|
||
<leafValues>
|
||
-8.2064878940582275e-01 6.2949016690254211e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 183 -3.0219739302992821e-02</internalNodes>
|
||
<leafValues>
|
||
3.3288109302520752e-01 -8.1444039940834045e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 184 2.4341929703950882e-02</internalNodes>
|
||
<leafValues>
|
||
9.3220241367816925e-02 -6.9502758979797363e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>32</maxWeakCount>
|
||
<stageThreshold>-1.4373550415039062e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 185 -3.9169401861727238e-03</internalNodes>
|
||
<leafValues>
|
||
4.5325928926467896e-01 -3.0284589529037476e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 186 1.0800900310277939e-01</internalNodes>
|
||
<leafValues>
|
||
3.6738589406013489e-02 -7.2782218456268311e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 187 1.5356090664863586e-01</internalNodes>
|
||
<leafValues>
|
||
-3.8900190591812134e-01 3.1287321448326111e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 188 8.7726805359125137e-03</internalNodes>
|
||
<leafValues>
|
||
-1.5705280005931854e-01 8.2666940987110138e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 189 -1.0571720078587532e-02</internalNodes>
|
||
<leafValues>
|
||
2.4971100687980652e-01 -4.7014111280441284e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 190 2.7240550145506859e-02</internalNodes>
|
||
<leafValues>
|
||
6.0097638517618179e-02 -6.6213667392730713e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 191 -3.6633450537919998e-02</internalNodes>
|
||
<leafValues>
|
||
5.1044297218322754e-01 -1.7766149342060089e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 192 1.3806289434432983e-01</internalNodes>
|
||
<leafValues>
|
||
-4.0644191205501556e-02 7.8849452733993530e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 193 9.4720393419265747e-02</internalNodes>
|
||
<leafValues>
|
||
-4.3654170632362366e-01 1.9054649770259857e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 194 -3.3387150615453720e-03</internalNodes>
|
||
<leafValues>
|
||
-6.8457669019699097e-01 9.6802540123462677e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 195 1.1899480159627274e-04</internalNodes>
|
||
<leafValues>
|
||
-3.5843661427497864e-01 2.2279889881610870e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 196 2.9007149860262871e-03</internalNodes>
|
||
<leafValues>
|
||
-1.5845039486885071e-01 6.6679857671260834e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 197 1.2376639991998672e-02</internalNodes>
|
||
<leafValues>
|
||
-1.4206279814243317e-01 4.9320921301841736e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 198 6.0215988196432590e-03</internalNodes>
|
||
<leafValues>
|
||
-1.4971609413623810e-01 2.1797719597816467e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 199 -1.6887940466403961e-01</internalNodes>
|
||
<leafValues>
|
||
7.1833407878875732e-01 -1.1091569811105728e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 200 -7.4033271521329880e-03</internalNodes>
|
||
<leafValues>
|
||
2.2573550045490265e-01 -3.2993030548095703e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 201 -6.5029351972043514e-03</internalNodes>
|
||
<leafValues>
|
||
4.7018998861312866e-01 -1.5201370418071747e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 202 1.7706790240481496e-03</internalNodes>
|
||
<leafValues>
|
||
-1.4644999802112579e-01 9.4745017588138580e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 203 1.7085459083318710e-02</internalNodes>
|
||
<leafValues>
|
||
8.5357367992401123e-02 -8.2599818706512451e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 204 -5.3032718598842621e-02</internalNodes>
|
||
<leafValues>
|
||
-6.5861982107162476e-01 -1.3727230252698064e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 205 2.7725089341402054e-02</internalNodes>
|
||
<leafValues>
|
||
-1.4935420453548431e-01 4.4009518623352051e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 206 5.8685488998889923e-02</internalNodes>
|
||
<leafValues>
|
||
7.8679984435439110e-03 -4.4109138846397400e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 207 -1.0465820319950581e-02</internalNodes>
|
||
<leafValues>
|
||
-5.8385229110717773e-01 1.0567150264978409e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 208 -4.4063638895750046e-02</internalNodes>
|
||
<leafValues>
|
||
-5.9246909618377686e-01 5.7151052169501781e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 209 -1.1932180263102055e-02</internalNodes>
|
||
<leafValues>
|
||
2.3818169534206390e-01 -2.8293299674987793e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 210 -1.2644910020753741e-03</internalNodes>
|
||
<leafValues>
|
||
1.0124749690294266e-01 -3.3939999341964722e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 211 -1.8404610455036163e-03</internalNodes>
|
||
<leafValues>
|
||
-6.7492902278900146e-01 9.5524467527866364e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 212 -7.9289656132459641e-03</internalNodes>
|
||
<leafValues>
|
||
-6.7770427465438843e-01 3.4221731126308441e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 213 5.7004559785127640e-03</internalNodes>
|
||
<leafValues>
|
||
-1.3198739290237427e-01 4.2710319161415100e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 214 1.8237680196762085e-02</internalNodes>
|
||
<leafValues>
|
||
3.0692299827933311e-02 -8.6847299337387085e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 215 3.2086670398712158e-03</internalNodes>
|
||
<leafValues>
|
||
-1.3335919380187988e-01 4.3883138895034790e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 216 1.2446580454707146e-02</internalNodes>
|
||
<leafValues>
|
||
2.9371360316872597e-02 -7.8926819562911987e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>34</maxWeakCount>
|
||
<stageThreshold>-1.3898090124130249e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 217 -1.2674730271100998e-02</internalNodes>
|
||
<leafValues>
|
||
5.0484418869018555e-01 -2.5669950246810913e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 218 1.1808129958808422e-02</internalNodes>
|
||
<leafValues>
|
||
6.3001699745655060e-02 -4.0641498565673828e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 219 2.5127220433205366e-03</internalNodes>
|
||
<leafValues>
|
||
-3.2253271341323853e-01 3.6614939570426941e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 220 -3.5469220019876957e-03</internalNodes>
|
||
<leafValues>
|
||
1.9579920172691345e-01 -1.5416850149631500e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 221 3.9148680865764618e-02</internalNodes>
|
||
<leafValues>
|
||
-2.5791868567466736e-01 3.3852350711822510e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 222 1.3151739537715912e-01</internalNodes>
|
||
<leafValues>
|
||
2.7472509071230888e-02 -5.5891007184982300e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 223 -1.6689460724592209e-02</internalNodes>
|
||
<leafValues>
|
||
1.4658740162849426e-01 -5.2727991342544556e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 224 6.4351540058851242e-03</internalNodes>
|
||
<leafValues>
|
||
-1.2016840279102325e-01 1.8379710614681244e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 225 -6.3846178352832794e-02</internalNodes>
|
||
<leafValues>
|
||
7.5390338897705078e-01 -1.0603629797697067e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 226 -4.6943090856075287e-03</internalNodes>
|
||
<leafValues>
|
||
2.0730340480804443e-01 -1.6408169269561768e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 227 1.1263520456850529e-02</internalNodes>
|
||
<leafValues>
|
||
1.0285060107707977e-01 -7.2724348306655884e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 228 1.0440419428050518e-03</internalNodes>
|
||
<leafValues>
|
||
1.3197229802608490e-01 -6.4476031064987183e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 229 2.9053710401058197e-02</internalNodes>
|
||
<leafValues>
|
||
-3.2099440693855286e-01 1.9499249756336212e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 230 1.2985640205442905e-02</internalNodes>
|
||
<leafValues>
|
||
-6.2498811632394791e-02 2.6551690697669983e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 231 1.4938330277800560e-02</internalNodes>
|
||
<leafValues>
|
||
8.0150052905082703e-02 -7.6676148176193237e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 232 -3.4180350601673126e-02</internalNodes>
|
||
<leafValues>
|
||
-5.1320338249206543e-01 -3.6074419040232897e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 233 4.3761111795902252e-02</internalNodes>
|
||
<leafValues>
|
||
-1.4384460449218750e-01 4.2616510391235352e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 234 -1.1876770295202732e-03</internalNodes>
|
||
<leafValues>
|
||
1.4837500452995300e-01 -5.0197489559650421e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 235 -1.3196719810366631e-02</internalNodes>
|
||
<leafValues>
|
||
-7.6232409477233887e-01 7.9683482646942139e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 236 -1.4940570108592510e-03</internalNodes>
|
||
<leafValues>
|
||
2.2585479915142059e-01 -1.0884329676628113e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 237 9.9800303578376770e-03</internalNodes>
|
||
<leafValues>
|
||
7.7047176659107208e-02 -8.1608718633651733e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 238 1.3630810426548123e-03</internalNodes>
|
||
<leafValues>
|
||
-1.0334450006484985e-01 2.0994339883327484e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 239 -2.6497698854655027e-03</internalNodes>
|
||
<leafValues>
|
||
4.8666700720787048e-01 -1.2183590233325958e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 240 2.9017059132456779e-02</internalNodes>
|
||
<leafValues>
|
||
3.0331170186400414e-02 -5.4417270421981812e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 241 1.7291629686951637e-02</internalNodes>
|
||
<leafValues>
|
||
-1.3578090071678162e-01 4.4251319766044617e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 242 1.9144080579280853e-03</internalNodes>
|
||
<leafValues>
|
||
-8.2041606307029724e-02 1.1203309893608093e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 243 9.2138089239597321e-03</internalNodes>
|
||
<leafValues>
|
||
9.5674678683280945e-02 -7.1387839317321777e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 244 1.9401769340038300e-01</internalNodes>
|
||
<leafValues>
|
||
-3.3527439832687378e-01 1.6470989584922791e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 245 -8.9092198759317398e-03</internalNodes>
|
||
<leafValues>
|
||
4.5958560705184937e-01 -1.3180640339851379e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 246 -1.6158509999513626e-02</internalNodes>
|
||
<leafValues>
|
||
-8.8425397872924805e-01 3.6370448768138885e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 247 -4.3315120041370392e-02</internalNodes>
|
||
<leafValues>
|
||
3.5693758726119995e-01 -1.4853119850158691e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 248 -6.0759939253330231e-02</internalNodes>
|
||
<leafValues>
|
||
3.1768760085105896e-01 -1.8056009709835052e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 249 -2.8645009733736515e-03</internalNodes>
|
||
<leafValues>
|
||
5.3059607744216919e-01 -1.1261919885873795e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 250 1.1360960081219673e-02</internalNodes>
|
||
<leafValues>
|
||
3.5099871456623077e-02 -4.7815018892288208e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>37</maxWeakCount>
|
||
<stageThreshold>-1.3544019460678101e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 251 1.3970459811389446e-02</internalNodes>
|
||
<leafValues>
|
||
-3.0530300736427307e-01 4.1125300526618958e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 252 -1.1679069697856903e-01</internalNodes>
|
||
<leafValues>
|
||
1.4812999963760376e-01 -7.0709809660911560e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 253 1.6397690400481224e-02</internalNodes>
|
||
<leafValues>
|
||
-3.0543169379234314e-01 3.0162781476974487e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 254 -2.0286109298467636e-02</internalNodes>
|
||
<leafValues>
|
||
-2.3618179559707642e-01 1.2187310308218002e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 255 3.3962181210517883e-01</internalNodes>
|
||
<leafValues>
|
||
-2.3415289819240570e-01 3.7955328822135925e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 256 8.0632884055376053e-03</internalNodes>
|
||
<leafValues>
|
||
-5.6521987915039062e-01 1.2719720602035522e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 257 -1.4234139816835523e-03</internalNodes>
|
||
<leafValues>
|
||
-5.8998572826385498e-01 1.1668500304222107e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 258 3.9983680471777916e-03</internalNodes>
|
||
<leafValues>
|
||
-9.9398262798786163e-02 1.2795600295066833e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 259 -9.4549506902694702e-03</internalNodes>
|
||
<leafValues>
|
||
-5.6156420707702637e-01 9.9381953477859497e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 260 3.7270709872245789e-02</internalNodes>
|
||
<leafValues>
|
||
8.4691196680068970e-02 -6.5302717685699463e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 261 8.1806071102619171e-03</internalNodes>
|
||
<leafValues>
|
||
6.4047202467918396e-02 -7.3235487937927246e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 262 6.7418292164802551e-02</internalNodes>
|
||
<leafValues>
|
||
4.3028471991419792e-03 -6.2574678659439087e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 263 1.8985599279403687e-02</internalNodes>
|
||
<leafValues>
|
||
7.0422857999801636e-02 -7.7566891908645630e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 264 -3.0685300589539111e-04</internalNodes>
|
||
<leafValues>
|
||
6.0799881815910339e-02 -7.3534972965717316e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 265 1.0786009952425957e-02</internalNodes>
|
||
<leafValues>
|
||
-1.2505950033664703e-01 4.8208248615264893e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 266 6.9674388505518436e-03</internalNodes>
|
||
<leafValues>
|
||
8.3264723420143127e-02 -6.9356048107147217e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 267 1.2767270207405090e-02</internalNodes>
|
||
<leafValues>
|
||
6.4788013696670532e-02 -7.0968890190124512e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 268 -1.4131699688732624e-02</internalNodes>
|
||
<leafValues>
|
||
-7.5622642040252686e-01 2.0618569105863571e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 269 -1.5918679535388947e-02</internalNodes>
|
||
<leafValues>
|
||
1.9603510200977325e-01 -2.7034899592399597e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 270 9.9455211311578751e-03</internalNodes>
|
||
<leafValues>
|
||
-4.3780571222305298e-01 1.1859329789876938e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 271 1.5286459587514400e-02</internalNodes>
|
||
<leafValues>
|
||
-1.9513919949531555e-01 2.6915138959884644e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 272 5.9025101363658905e-03</internalNodes>
|
||
<leafValues>
|
||
-1.6288129985332489e-01 3.6743709444999695e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 273 -6.9729480892419815e-03</internalNodes>
|
||
<leafValues>
|
||
4.6202778816223145e-01 -1.5376560389995575e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 274 -1.9449390470981598e-02</internalNodes>
|
||
<leafValues>
|
||
-5.3632599115371704e-01 3.1576488167047501e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 275 -4.7259521670639515e-03</internalNodes>
|
||
<leafValues>
|
||
-7.3517972230911255e-01 7.3678806424140930e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 276 -8.5517195984721184e-03</internalNodes>
|
||
<leafValues>
|
||
3.5986369848251343e-01 -1.2420760095119476e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 277 -9.8964512348175049e-02</internalNodes>
|
||
<leafValues>
|
||
6.2507808208465576e-01 -8.6647883057594299e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 278 -1.7731260508298874e-02</internalNodes>
|
||
<leafValues>
|
||
-5.7925891876220703e-01 2.5198649615049362e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 279 -2.9190430417656898e-02</internalNodes>
|
||
<leafValues>
|
||
5.7298821210861206e-01 -1.0151000320911407e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 280 5.4621109738945961e-03</internalNodes>
|
||
<leafValues>
|
||
4.4515479356050491e-02 -6.6922581195831299e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 281 -6.8695018999278545e-03</internalNodes>
|
||
<leafValues>
|
||
-5.8384990692138672e-01 8.7239846587181091e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 282 -1.7049070447683334e-03</internalNodes>
|
||
<leafValues>
|
||
2.2694580256938934e-01 -8.1620521843433380e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 283 5.8957659639418125e-03</internalNodes>
|
||
<leafValues>
|
||
-1.1778759956359863e-01 4.2724978923797607e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 284 8.5842777043581009e-03</internalNodes>
|
||
<leafValues>
|
||
-5.4629139602184296e-02 1.0813979804515839e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 285 1.2934260070323944e-02</internalNodes>
|
||
<leafValues>
|
||
7.0849359035491943e-02 -7.3857682943344116e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 286 1.9973270595073700e-02</internalNodes>
|
||
<leafValues>
|
||
1.6626559663563967e-03 -7.6631492376327515e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 287 5.5011189542710781e-03</internalNodes>
|
||
<leafValues>
|
||
8.9468717575073242e-02 -5.3985279798507690e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>38</maxWeakCount>
|
||
<stageThreshold>-1.3085269927978516e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 288 7.9501233994960785e-03</internalNodes>
|
||
<leafValues>
|
||
-2.7952459454536438e-01 4.3506631255149841e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 289 -1.5085919760167599e-02</internalNodes>
|
||
<leafValues>
|
||
5.9209001064300537e-01 -1.6481369733810425e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 290 1.9475109875202179e-01</internalNodes>
|
||
<leafValues>
|
||
-3.1889539957046509e-01 2.8196701407432556e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 291 -2.4689928977750242e-04</internalNodes>
|
||
<leafValues>
|
||
9.6763692796230316e-02 -1.8406489491462708e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 292 5.2499058656394482e-03</internalNodes>
|
||
<leafValues>
|
||
1.5704880654811859e-01 -5.2710950374603271e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 293 -1.2732569302897900e-04</internalNodes>
|
||
<leafValues>
|
||
5.3218118846416473e-02 -1.6152860224246979e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 294 -6.5984549000859261e-03</internalNodes>
|
||
<leafValues>
|
||
2.1844869852066040e-01 -3.7529769539833069e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 295 -1.2836559675633907e-02</internalNodes>
|
||
<leafValues>
|
||
6.1008229851722717e-02 -1.1862020194530487e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 296 -1.4707820117473602e-01</internalNodes>
|
||
<leafValues>
|
||
7.9065358638763428e-01 -9.4447426497936249e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 297 4.8533070832490921e-02</internalNodes>
|
||
<leafValues>
|
||
4.9431171268224716e-02 -5.9807902574539185e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 298 4.1398849338293076e-02</internalNodes>
|
||
<leafValues>
|
||
-3.1118649244308472e-01 2.4850000441074371e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 299 5.9322831220924854e-03</internalNodes>
|
||
<leafValues>
|
||
-1.9105120003223419e-01 2.6189088821411133e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 300 6.1201062053442001e-03</internalNodes>
|
||
<leafValues>
|
||
-1.4400300383567810e-01 3.8592028617858887e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 301 -1.2118129990994930e-02</internalNodes>
|
||
<leafValues>
|
||
-5.7840502262115479e-01 3.1328909099102020e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 302 7.5321048498153687e-03</internalNodes>
|
||
<leafValues>
|
||
7.6200783252716064e-02 -7.1263229846954346e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 303 9.4633679836988449e-03</internalNodes>
|
||
<leafValues>
|
||
-8.1573672592639923e-02 1.5981380641460419e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 304 -6.4435349777340889e-03</internalNodes>
|
||
<leafValues>
|
||
-8.9533412456512451e-01 6.0908339917659760e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 305 -1.3353319838643074e-02</internalNodes>
|
||
<leafValues>
|
||
5.0735729932785034e-01 -1.4220820367336273e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 306 -4.8206631094217300e-02</internalNodes>
|
||
<leafValues>
|
||
-7.0776158571243286e-01 8.7017923593521118e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 307 -8.6862186435610056e-05</internalNodes>
|
||
<leafValues>
|
||
9.2491082847118378e-02 -1.9064180552959442e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 308 3.5890119615942240e-03</internalNodes>
|
||
<leafValues>
|
||
-1.1369240283966064e-01 4.5717659592628479e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 309 2.5103650987148285e-03</internalNodes>
|
||
<leafValues>
|
||
-9.6626877784729004e-02 2.8315341472625732e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 310 -1.6438219463452697e-03</internalNodes>
|
||
<leafValues>
|
||
-6.8512988090515137e-01 8.4855683147907257e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 311 -1.1147640179842710e-03</internalNodes>
|
||
<leafValues>
|
||
2.0340760052204132e-01 -9.5162183046340942e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 312 3.3129220828413963e-03</internalNodes>
|
||
<leafValues>
|
||
-1.2348870187997818e-01 4.5109578967094421e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 313 1.2473019771277905e-02</internalNodes>
|
||
<leafValues>
|
||
8.5647627711296082e-02 -1.7752259969711304e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 314 1.1887500062584877e-02</internalNodes>
|
||
<leafValues>
|
||
7.9497292637825012e-02 -7.1333557367324829e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 315 4.6640802174806595e-03</internalNodes>
|
||
<leafValues>
|
||
-1.1890850216150284e-01 1.6375760734081268e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 316 -7.5049358420073986e-03</internalNodes>
|
||
<leafValues>
|
||
4.5544099807739258e-01 -1.2412810325622559e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 317 1.7780659720301628e-02</internalNodes>
|
||
<leafValues>
|
||
-1.0757599771022797e-01 1.6240009665489197e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 318 -6.5337750129401684e-03</internalNodes>
|
||
<leafValues>
|
||
4.3141070008277893e-01 -1.2603540718555450e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 319 -2.4446230381727219e-02</internalNodes>
|
||
<leafValues>
|
||
-6.6479730606079102e-01 1.9722750410437584e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 320 6.8284119479358196e-03</internalNodes>
|
||
<leafValues>
|
||
8.7926700711250305e-02 -5.4765981435775757e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 321 -1.7527850344777107e-02</internalNodes>
|
||
<leafValues>
|
||
-4.7350269556045532e-01 1.8452549353241920e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 322 -5.6044701486825943e-03</internalNodes>
|
||
<leafValues>
|
||
1.6700869798660278e-01 -2.8558060526847839e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 323 5.6587088853120804e-02</internalNodes>
|
||
<leafValues>
|
||
9.8792626522481441e-04 -9.0761202573776245e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 324 -9.1678956523537636e-03</internalNodes>
|
||
<leafValues>
|
||
-5.7369470596313477e-01 8.6971327662467957e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 325 -7.9324431717395782e-03</internalNodes>
|
||
<leafValues>
|
||
-7.1619319915771484e-01 4.7531701624393463e-02</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>44</maxWeakCount>
|
||
<stageThreshold>-1.3564130067825317e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 326 1.1259860359132290e-02</internalNodes>
|
||
<leafValues>
|
||
-3.2671540975570679e-01 3.7448620796203613e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 327 -8.0411562521476299e-05</internalNodes>
|
||
<leafValues>
|
||
1.3456510007381439e-01 -3.5597088932991028e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 328 -1.0097360238432884e-02</internalNodes>
|
||
<leafValues>
|
||
4.2515400052070618e-01 -2.0356260240077972e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 329 -9.5205657184123993e-02</internalNodes>
|
||
<leafValues>
|
||
-2.6214841008186340e-01 4.4497821480035782e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 330 2.1976239979267120e-01</internalNodes>
|
||
<leafValues>
|
||
-2.6376900076866150e-01 2.7963450551033020e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 331 -1.4373429585248232e-03</internalNodes>
|
||
<leafValues>
|
||
1.9384309649467468e-01 -6.6377736628055573e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 332 -2.1600460633635521e-02</internalNodes>
|
||
<leafValues>
|
||
5.2735280990600586e-01 -1.1125139892101288e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 333 8.8454764336347580e-03</internalNodes>
|
||
<leafValues>
|
||
-1.6414600610733032e-01 1.7835170030593872e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 334 3.5627551376819611e-02</internalNodes>
|
||
<leafValues>
|
||
-5.0226557254791260e-01 1.2036989629268646e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 335 1.9948599860072136e-02</internalNodes>
|
||
<leafValues>
|
||
-2.4443860352039337e-01 2.0503400266170502e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 336 -3.0674149747937918e-03</internalNodes>
|
||
<leafValues>
|
||
-5.3477287292480469e-01 1.1543580144643784e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 337 -1.2012269580736756e-03</internalNodes>
|
||
<leafValues>
|
||
1.2676300108432770e-01 -1.3938720524311066e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 338 1.7143359407782555e-02</internalNodes>
|
||
<leafValues>
|
||
-1.0488930344581604e-01 4.8458871245384216e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 339 7.7037338633090258e-04</internalNodes>
|
||
<leafValues>
|
||
-2.6416009664535522e-01 1.3753029704093933e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 340 1.9928140100091696e-03</internalNodes>
|
||
<leafValues>
|
||
1.0820219665765762e-01 -4.6027541160583496e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 341 8.1858411431312561e-03</internalNodes>
|
||
<leafValues>
|
||
-1.1870039999485016e-01 1.8429510295391083e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 342 2.0016850531101227e-01</internalNodes>
|
||
<leafValues>
|
||
-7.7433213591575623e-02 6.7445492744445801e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 343 -1.2134050019085407e-02</internalNodes>
|
||
<leafValues>
|
||
4.5361760258674622e-01 -3.2230481505393982e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 344 1.1809550225734711e-02</internalNodes>
|
||
<leafValues>
|
||
-1.5140220522880554e-01 4.1091579198837280e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 345 -5.3903311491012573e-02</internalNodes>
|
||
<leafValues>
|
||
2.4644249677658081e-01 -1.6336809843778610e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 346 2.5369100272655487e-02</internalNodes>
|
||
<leafValues>
|
||
5.7606618851423264e-02 -8.1810200214385986e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 347 4.0477071888744831e-03</internalNodes>
|
||
<leafValues>
|
||
3.4279700368642807e-02 -3.8912689685821533e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 348 2.3273769766092300e-03</internalNodes>
|
||
<leafValues>
|
||
-2.6318120956420898e-01 2.0111019909381866e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 349 -1.4055520296096802e-02</internalNodes>
|
||
<leafValues>
|
||
-4.5798641443252563e-01 1.0322000086307526e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 350 4.1040539741516113e-02</internalNodes>
|
||
<leafValues>
|
||
-1.0665339976549149e-01 4.9921628832817078e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 351 1.7403350211679935e-03</internalNodes>
|
||
<leafValues>
|
||
-3.0963689088821411e-02 9.0507246553897858e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 352 -5.9111667796969414e-03</internalNodes>
|
||
<leafValues>
|
||
-6.9301342964172363e-01 7.1324340999126434e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 353 -8.4086872637271881e-02</internalNodes>
|
||
<leafValues>
|
||
4.6972590684890747e-01 -4.9859449267387390e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 354 1.2733220355585217e-03</internalNodes>
|
||
<leafValues>
|
||
-3.5704851150512695e-01 1.3806779682636261e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 355 5.9486827813088894e-03</internalNodes>
|
||
<leafValues>
|
||
-1.5816900134086609e-01 2.8468400239944458e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 356 -8.6815077811479568e-03</internalNodes>
|
||
<leafValues>
|
||
-7.6587718725204468e-01 6.2390629202127457e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 357 -1.0674200020730495e-02</internalNodes>
|
||
<leafValues>
|
||
-5.5144512653350830e-01 5.6196320801973343e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 358 1.7951499670743942e-02</internalNodes>
|
||
<leafValues>
|
||
6.1362300068140030e-02 -6.4841997623443604e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 359 1.9660689576994628e-04</internalNodes>
|
||
<leafValues>
|
||
-1.4563970267772675e-01 9.5173902809619904e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 360 -1.3475000159814954e-03</internalNodes>
|
||
<leafValues>
|
||
-3.9846318960189819e-01 1.0717230290174484e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 361 1.3271289644762874e-03</internalNodes>
|
||
<leafValues>
|
||
-7.6305247843265533e-02 1.5964789688587189e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 362 3.9857891388237476e-03</internalNodes>
|
||
<leafValues>
|
||
-1.0918959975242615e-01 3.6956569552421570e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 363 1.7747710226103663e-03</internalNodes>
|
||
<leafValues>
|
||
-5.8550398796796799e-02 7.1181796491146088e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 364 -6.9627179764211178e-03</internalNodes>
|
||
<leafValues>
|
||
3.6977839469909668e-01 -1.1677960306406021e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 365 -9.0530123561620712e-03</internalNodes>
|
||
<leafValues>
|
||
-5.3131139278411865e-01 4.2773369699716568e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 366 -5.0673801451921463e-02</internalNodes>
|
||
<leafValues>
|
||
6.5122097730636597e-01 -6.6222466528415680e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 367 -9.9803637713193893e-03</internalNodes>
|
||
<leafValues>
|
||
1.7810410261154175e-01 -4.8675179481506348e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 368 1.0967300273478031e-02</internalNodes>
|
||
<leafValues>
|
||
6.3715361058712006e-02 -7.0216029882431030e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 369 7.1746408939361572e-03</internalNodes>
|
||
<leafValues>
|
||
-9.5948472619056702e-02 1.5818059444427490e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>45</maxWeakCount>
|
||
<stageThreshold>-1.2748670578002930e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 370 -1.4637179672718048e-02</internalNodes>
|
||
<leafValues>
|
||
4.5756229758262634e-01 -2.5793579220771790e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 371 -1.1372080189175904e-04</internalNodes>
|
||
<leafValues>
|
||
1.4856390655040741e-01 -1.3528409600257874e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 372 6.3527049496769905e-03</internalNodes>
|
||
<leafValues>
|
||
-1.8282939493656158e-01 5.0529718399047852e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 373 2.4946528719738126e-04</internalNodes>
|
||
<leafValues>
|
||
-3.5463958978652954e-01 1.1956059932708740e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 374 8.5882786661386490e-03</internalNodes>
|
||
<leafValues>
|
||
-3.6795818805694580e-01 1.9289310276508331e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 375 -5.3795471787452698e-02</internalNodes>
|
||
<leafValues>
|
||
-9.2534601688385010e-01 -3.0407099984586239e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 376 -1.2914909981191158e-02</internalNodes>
|
||
<leafValues>
|
||
2.0769760012626648e-01 -2.8073310852050781e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 377 6.5217018127441406e-02</internalNodes>
|
||
<leafValues>
|
||
9.1229602694511414e-02 -3.9509040117263794e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 378 -1.5482950024306774e-02</internalNodes>
|
||
<leafValues>
|
||
5.5492401123046875e-01 -1.0178919881582260e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 379 -7.0964470505714417e-02</internalNodes>
|
||
<leafValues>
|
||
-6.0590541362762451e-01 3.3235780894756317e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 380 -1.4792110025882721e-01</internalNodes>
|
||
<leafValues>
|
||
6.8140488862991333e-01 -9.2882059514522552e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 381 3.2156299799680710e-02</internalNodes>
|
||
<leafValues>
|
||
-1.3000990450382233e-01 1.6143409907817841e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 382 -5.5202730000019073e-03</internalNodes>
|
||
<leafValues>
|
||
1.8147900700569153e-01 -3.2928371429443359e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 383 1.7749259248375893e-02</internalNodes>
|
||
<leafValues>
|
||
-6.7472197115421295e-02 2.4095970392227173e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 384 -1.4773460105061531e-02</internalNodes>
|
||
<leafValues>
|
||
-7.1976912021636963e-01 7.0244252681732178e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 385 -2.1384380757808685e-02</internalNodes>
|
||
<leafValues>
|
||
-6.6300392150878906e-01 6.1542339622974396e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 386 1.1285319924354553e-02</internalNodes>
|
||
<leafValues>
|
||
-1.1147149652242661e-01 4.2070099711418152e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 387 5.3818488959223032e-04</internalNodes>
|
||
<leafValues>
|
||
1.3580459356307983e-01 -3.6389431357383728e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 388 -4.5372340828180313e-03</internalNodes>
|
||
<leafValues>
|
||
-6.2848389148712158e-01 7.5644947588443756e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 389 -5.8880869299173355e-02</internalNodes>
|
||
<leafValues>
|
||
-4.4123521447181702e-01 5.2693258039653301e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 390 3.7623539566993713e-02</internalNodes>
|
||
<leafValues>
|
||
6.0741778463125229e-02 -7.3273491859436035e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 391 4.9864239990711212e-03</internalNodes>
|
||
<leafValues>
|
||
-9.5100089907646179e-02 1.3218070566654205e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 392 1.5848229825496674e-01</internalNodes>
|
||
<leafValues>
|
||
-2.3477560281753540e-01 2.0766119658946991e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 393 -2.2148280404508114e-03</internalNodes>
|
||
<leafValues>
|
||
1.3150349259376526e-01 -7.2531886398792267e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 394 -2.4197169113904238e-03</internalNodes>
|
||
<leafValues>
|
||
3.4369221329689026e-01 -1.3603129982948303e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 395 1.3667210005223751e-02</internalNodes>
|
||
<leafValues>
|
||
-1.1352819949388504e-01 1.8905560672283173e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 396 3.4907150268554688e-01</internalNodes>
|
||
<leafValues>
|
||
-2.0564649999141693e-01 2.0814339816570282e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 397 -2.3180799558758736e-02</internalNodes>
|
||
<leafValues>
|
||
-7.0410561561584473e-01 6.5354611724615097e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 398 -2.4704890325665474e-02</internalNodes>
|
||
<leafValues>
|
||
4.3212160468101501e-01 -1.0485579818487167e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 399 3.5061739385128021e-02</internalNodes>
|
||
<leafValues>
|
||
-5.6936308741569519e-02 2.4053120613098145e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 400 -2.8482209891080856e-02</internalNodes>
|
||
<leafValues>
|
||
-6.4425909519195557e-01 6.7065469920635223e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 401 9.4022173434495926e-03</internalNodes>
|
||
<leafValues>
|
||
-8.7327830493450165e-02 1.0236190259456635e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 402 1.2662390246987343e-02</internalNodes>
|
||
<leafValues>
|
||
6.4649492502212524e-02 -6.6464841365814209e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 403 -1.8630980048328638e-04</internalNodes>
|
||
<leafValues>
|
||
8.8812537491321564e-02 -1.4801080524921417e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 404 -6.3631217926740646e-03</internalNodes>
|
||
<leafValues>
|
||
-6.1257928609848022e-01 7.0822767913341522e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 405 -3.2741650938987732e-03</internalNodes>
|
||
<leafValues>
|
||
1.6412730515003204e-01 -1.3364849984645844e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 406 3.4096399322152138e-03</internalNodes>
|
||
<leafValues>
|
||
-1.2046200037002563e-01 3.2251781225204468e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 407 -2.0664960611611605e-03</internalNodes>
|
||
<leafValues>
|
||
8.0544687807559967e-02 -3.9290331304073334e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 408 -7.1488898247480392e-03</internalNodes>
|
||
<leafValues>
|
||
3.5944211483001709e-01 -1.1370600014925003e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 409 1.4608979690819979e-03</internalNodes>
|
||
<leafValues>
|
||
-1.4393359422683716e-01 1.0468409955501556e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 410 -1.2510320171713829e-02</internalNodes>
|
||
<leafValues>
|
||
3.0024001002311707e-01 -1.3041430711746216e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 411 -1.6470119357109070e-02</internalNodes>
|
||
<leafValues>
|
||
-3.4044870734214783e-01 2.2476559504866600e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 412 -1.3765309937298298e-02</internalNodes>
|
||
<leafValues>
|
||
4.4677600264549255e-01 -9.7284018993377686e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 413 1.0946969996439293e-04</internalNodes>
|
||
<leafValues>
|
||
-2.0872430503368378e-01 1.5401780605316162e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 414 -6.9605209864675999e-03</internalNodes>
|
||
<leafValues>
|
||
-8.2299548387527466e-01 4.8897851258516312e-02</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>50</maxWeakCount>
|
||
<stageThreshold>-1.2878630161285400e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 415 4.9184081144630909e-03</internalNodes>
|
||
<leafValues>
|
||
-3.2976099848747253e-01 3.1599700450897217e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 416 -8.4240734577178955e-03</internalNodes>
|
||
<leafValues>
|
||
3.2350379228591919e-01 -2.4553489685058594e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 417 2.0760910212993622e-01</internalNodes>
|
||
<leafValues>
|
||
-2.7401238679885864e-01 2.4197450280189514e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 418 -1.5002899803221226e-02</internalNodes>
|
||
<leafValues>
|
||
8.3533883094787598e-02 -2.5596448779106140e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 419 2.2144610993564129e-03</internalNodes>
|
||
<leafValues>
|
||
-2.2534610331058502e-01 2.2740550339221954e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 420 -6.0699690133333206e-02</internalNodes>
|
||
<leafValues>
|
||
1.8549209833145142e-01 -1.9505530595779419e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 421 -5.6538339704275131e-02</internalNodes>
|
||
<leafValues>
|
||
6.1330437660217285e-01 -8.7735809385776520e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 422 -1.4412499964237213e-02</internalNodes>
|
||
<leafValues>
|
||
2.4093009531497955e-01 -2.7344560623168945e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 423 -1.4219420263543725e-03</internalNodes>
|
||
<leafValues>
|
||
-6.0177552700042725e-01 1.0058429837226868e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 424 1.6331190243363380e-02</internalNodes>
|
||
<leafValues>
|
||
2.1288860589265823e-02 -5.0142019987106323e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 425 1.4106729999184608e-02</internalNodes>
|
||
<leafValues>
|
||
-1.8390950560569763e-01 2.6597890257835388e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 426 -4.9360690172761679e-04</internalNodes>
|
||
<leafValues>
|
||
3.0524199828505516e-02 -2.0498749613761902e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 427 -7.0101441815495491e-03</internalNodes>
|
||
<leafValues>
|
||
4.0488889813423157e-01 -1.1826159805059433e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 428 6.4736358821392059e-02</internalNodes>
|
||
<leafValues>
|
||
9.0163238346576691e-02 -4.8485979437828064e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 429 -6.7224488593637943e-03</internalNodes>
|
||
<leafValues>
|
||
-5.4630178213119507e-01 7.3308691382408142e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 430 -1.2748160399496555e-02</internalNodes>
|
||
<leafValues>
|
||
-6.7641848325729370e-01 3.2798580825328827e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 431 -7.3234830051660538e-03</internalNodes>
|
||
<leafValues>
|
||
-6.3869500160217285e-01 5.4413169622421265e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 432 -1.7713790759444237e-02</internalNodes>
|
||
<leafValues>
|
||
-7.4989777803421021e-01 6.3041099347174168e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 433 -1.1022159829735756e-02</internalNodes>
|
||
<leafValues>
|
||
4.7562441229820251e-01 -8.7812356650829315e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 434 -7.2062062099575996e-03</internalNodes>
|
||
<leafValues>
|
||
-5.1175302267074585e-01 3.8222119212150574e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 435 7.8669954091310501e-03</internalNodes>
|
||
<leafValues>
|
||
-1.0822050273418427e-01 4.3007129430770874e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 436 1.4753219671547413e-02</internalNodes>
|
||
<leafValues>
|
||
3.0923029407858849e-02 -5.8399969339370728e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 437 -8.7396129965782166e-03</internalNodes>
|
||
<leafValues>
|
||
-5.5709302425384521e-01 6.5057590603828430e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 438 -1.8765570130199194e-03</internalNodes>
|
||
<leafValues>
|
||
2.0753450691699982e-01 -1.0404630005359650e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 439 6.1403261497616768e-03</internalNodes>
|
||
<leafValues>
|
||
-8.8196322321891785e-02 5.0393581390380859e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 440 -6.2455530278384686e-03</internalNodes>
|
||
<leafValues>
|
||
4.5692878961563110e-01 -8.8871538639068604e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 441 -6.5213078632950783e-03</internalNodes>
|
||
<leafValues>
|
||
-7.3358172178268433e-01 6.1022911220788956e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 442 8.4276527166366577e-02</internalNodes>
|
||
<leafValues>
|
||
-5.1953801885247231e-03 -7.2847050428390503e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 443 1.2186209671199322e-02</internalNodes>
|
||
<leafValues>
|
||
8.0246433615684509e-02 -4.9406829476356506e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 444 -5.2070740610361099e-02</internalNodes>
|
||
<leafValues>
|
||
5.3785991668701172e-01 -2.6184149086475372e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 445 -1.8056540284305811e-03</internalNodes>
|
||
<leafValues>
|
||
1.2499610334634781e-01 -3.1014269590377808e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 446 3.5525551065802574e-03</internalNodes>
|
||
<leafValues>
|
||
-1.4355179667472839e-01 9.3508958816528320e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 447 2.1722750738263130e-02</internalNodes>
|
||
<leafValues>
|
||
5.4289009422063828e-02 -6.9004470109939575e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 448 1.5696860849857330e-02</internalNodes>
|
||
<leafValues>
|
||
-6.2646992504596710e-02 5.2328252792358398e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 449 1.1486239731311798e-02</internalNodes>
|
||
<leafValues>
|
||
-1.7067709565162659e-01 2.5379261374473572e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 450 -7.0110350847244263e-02</internalNodes>
|
||
<leafValues>
|
||
2.1845239400863647e-01 -3.2540921121835709e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 451 -2.3832129314541817e-02</internalNodes>
|
||
<leafValues>
|
||
-7.2852367162704468e-01 5.6103359907865524e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 452 1.8152900040149689e-02</internalNodes>
|
||
<leafValues>
|
||
7.9692779108881950e-03 -5.0108677148818970e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 453 -4.9337781965732574e-03</internalNodes>
|
||
<leafValues>
|
||
-5.4861277341842651e-01 7.4599482119083405e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 454 -2.8721539303660393e-02</internalNodes>
|
||
<leafValues>
|
||
-5.0967568159103394e-01 1.3899230398237705e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 455 6.0404408723115921e-03</internalNodes>
|
||
<leafValues>
|
||
8.0196216702461243e-02 -4.5811289548873901e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 456 -1.7407380044460297e-02</internalNodes>
|
||
<leafValues>
|
||
-6.7178148031234741e-01 7.8524583950638771e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 457 1.8755920231342316e-02</internalNodes>
|
||
<leafValues>
|
||
-7.0715762674808502e-02 5.2900022268295288e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 458 7.5297430157661438e-03</internalNodes>
|
||
<leafValues>
|
||
-5.4971348494291306e-02 1.2586890161037445e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 459 2.7714699506759644e-02</internalNodes>
|
||
<leafValues>
|
||
-9.4051122665405273e-02 3.9269289374351501e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 460 -1.9136169925332069e-02</internalNodes>
|
||
<leafValues>
|
||
-6.1292767524719238e-01 4.3676119297742844e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 461 -1.1729629710316658e-02</internalNodes>
|
||
<leafValues>
|
||
4.0649351477622986e-01 -1.0054980218410492e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 462 2.6842709630727768e-03</internalNodes>
|
||
<leafValues>
|
||
6.1806179583072662e-02 -2.6040008664131165e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 463 1.3504150323569775e-02</internalNodes>
|
||
<leafValues>
|
||
6.3247829675674438e-02 -6.1916601657867432e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 464 -4.8922952264547348e-03</internalNodes>
|
||
<leafValues>
|
||
-7.3288178443908691e-01 4.1912440210580826e-02</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>56</maxWeakCount>
|
||
<stageThreshold>-1.3936669826507568e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 465 1.0124780237674713e-02</internalNodes>
|
||
<leafValues>
|
||
-2.2478839755058289e-01 4.9562188982963562e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 466 2.0572949945926666e-01</internalNodes>
|
||
<leafValues>
|
||
2.6126179844141006e-02 -7.9092139005661011e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 467 1.7348840832710266e-02</internalNodes>
|
||
<leafValues>
|
||
-3.8796889781951904e-01 2.0708920061588287e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 468 -2.5478509068489075e-01</internalNodes>
|
||
<leafValues>
|
||
-5.7850080728530884e-01 1.2234980240464211e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 469 -2.8602819889783859e-02</internalNodes>
|
||
<leafValues>
|
||
1.7568160593509674e-01 -3.7877011299133301e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 470 9.1557251289486885e-03</internalNodes>
|
||
<leafValues>
|
||
5.8734539896249771e-02 -5.3387188911437988e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 471 -6.7997328005731106e-03</internalNodes>
|
||
<leafValues>
|
||
4.2286089062690735e-01 -1.5031290054321289e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 472 -9.0167991816997528e-02</internalNodes>
|
||
<leafValues>
|
||
-4.7068008780479431e-01 1.9146749749779701e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 473 -2.0075060427188873e-02</internalNodes>
|
||
<leafValues>
|
||
1.5215730667114258e-01 -3.0286580324172974e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 474 -1.5905030071735382e-01</internalNodes>
|
||
<leafValues>
|
||
4.8262810707092285e-01 -5.5345159024000168e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 475 1.0053060203790665e-01</internalNodes>
|
||
<leafValues>
|
||
-3.1768739223480225e-01 1.8654659390449524e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 476 2.9778450261801481e-03</internalNodes>
|
||
<leafValues>
|
||
-4.3355960398912430e-02 3.0445128679275513e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 477 -6.8455971777439117e-03</internalNodes>
|
||
<leafValues>
|
||
-6.5422862768173218e-01 5.7101141661405563e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 478 -2.3462900891900063e-02</internalNodes>
|
||
<leafValues>
|
||
-7.4357628822326660e-01 1.1618070304393768e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 479 8.4667708724737167e-03</internalNodes>
|
||
<leafValues>
|
||
-1.1318150162696838e-01 3.4910741448402405e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 480 2.9225839301943779e-02</internalNodes>
|
||
<leafValues>
|
||
-3.8572481274604797e-01 2.5479009747505188e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 481 1.1265130341053009e-01</internalNodes>
|
||
<leafValues>
|
||
-9.8677836358547211e-02 7.0809727907180786e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 482 1.0059010237455368e-01</internalNodes>
|
||
<leafValues>
|
||
3.9431888610124588e-02 -2.0872689783573151e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 483 -1.4622969552874565e-02</internalNodes>
|
||
<leafValues>
|
||
1.0739020258188248e-01 -4.4337108731269836e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 484 5.9183081611990929e-03</internalNodes>
|
||
<leafValues>
|
||
2.2479789331555367e-02 -4.7095221281051636e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 485 -1.1137289926409721e-02</internalNodes>
|
||
<leafValues>
|
||
-5.3821432590484619e-01 7.1250103414058685e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 486 2.0612619817256927e-01</internalNodes>
|
||
<leafValues>
|
||
2.5029089301824570e-03 -5.5134499073028564e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 487 1.9606389105319977e-02</internalNodes>
|
||
<leafValues>
|
||
6.8830899894237518e-02 -5.8748298883438110e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 488 1.4237780123949051e-02</internalNodes>
|
||
<leafValues>
|
||
-1.0993599891662598e-01 2.2019009292125702e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 489 -1.1579900048673153e-02</internalNodes>
|
||
<leafValues>
|
||
-6.0401040315628052e-01 6.1112940311431885e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 490 2.7201389893889427e-03</internalNodes>
|
||
<leafValues>
|
||
-8.6882777512073517e-02 2.1160760521888733e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 491 4.3311892077326775e-03</internalNodes>
|
||
<leafValues>
|
||
-8.5722766816616058e-02 4.3251448869705200e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 492 1.4856910565868020e-03</internalNodes>
|
||
<leafValues>
|
||
-3.5430859774351120e-02 1.4321969449520111e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 493 -2.4972909595817327e-03</internalNodes>
|
||
<leafValues>
|
||
4.2610010504722595e-01 -1.0974500328302383e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 494 1.3857520185410976e-02</internalNodes>
|
||
<leafValues>
|
||
2.1762149408459663e-02 -4.7706019878387451e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 495 -2.3594869300723076e-02</internalNodes>
|
||
<leafValues>
|
||
-4.6244761347770691e-01 7.9718932509422302e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 496 -3.0481400899589062e-03</internalNodes>
|
||
<leafValues>
|
||
1.7503540217876434e-01 -2.9865878820419312e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 497 -1.3127359561622143e-03</internalNodes>
|
||
<leafValues>
|
||
-5.5913221836090088e-01 7.1896396577358246e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 498 -4.3319691903889179e-03</internalNodes>
|
||
<leafValues>
|
||
-8.0651438236236572e-01 1.5199059620499611e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 499 -3.6742340307682753e-03</internalNodes>
|
||
<leafValues>
|
||
4.2407768964767456e-01 -9.2443756759166718e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 500 2.5564959272742271e-02</internalNodes>
|
||
<leafValues>
|
||
2.9059829190373421e-02 -4.8274171352386475e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 501 2.8129860758781433e-02</internalNodes>
|
||
<leafValues>
|
||
-8.0184653401374817e-02 5.2279758453369141e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 502 8.8039072579704225e-05</internalNodes>
|
||
<leafValues>
|
||
-7.4344098567962646e-02 9.4045989215373993e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 503 -4.6100970357656479e-03</internalNodes>
|
||
<leafValues>
|
||
-5.1046329736709595e-01 7.0259310305118561e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 504 2.4607360828667879e-03</internalNodes>
|
||
<leafValues>
|
||
-7.3687382042407990e-02 1.7185910046100616e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 505 -1.8461809959262609e-03</internalNodes>
|
||
<leafValues>
|
||
3.2514411211013794e-01 -1.2517750263214111e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 506 2.6498539955355227e-04</internalNodes>
|
||
<leafValues>
|
||
-1.0129640251398087e-01 5.4491110146045685e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 507 1.3974959962069988e-02</internalNodes>
|
||
<leafValues>
|
||
1.0203190147876740e-01 -3.9044409990310669e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 508 3.3575310371816158e-03</internalNodes>
|
||
<leafValues>
|
||
-6.4226530492305756e-02 5.4202359169721603e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 509 7.3201949708163738e-03</internalNodes>
|
||
<leafValues>
|
||
5.9934031218290329e-02 -6.0588258504867554e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 510 -1.2428000336512923e-03</internalNodes>
|
||
<leafValues>
|
||
1.1665280163288116e-01 -7.2288237512111664e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 511 -1.8044740427285433e-03</internalNodes>
|
||
<leafValues>
|
||
3.4149900078773499e-01 -9.8468907177448273e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 512 -4.8408531583845615e-03</internalNodes>
|
||
<leafValues>
|
||
-5.3094178438186646e-01 3.1446449458599091e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 513 4.5861881226301193e-03</internalNodes>
|
||
<leafValues>
|
||
-1.6896879673004150e-01 1.9897870719432831e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 514 1.3223010115325451e-02</internalNodes>
|
||
<leafValues>
|
||
2.6502050459384918e-02 -6.1782538890838623e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 515 -1.3310019858181477e-03</internalNodes>
|
||
<leafValues>
|
||
-3.7018761038780212e-01 8.9922286570072174e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 516 -1.4923400012776256e-03</internalNodes>
|
||
<leafValues>
|
||
-3.2771658897399902e-01 6.3753470778465271e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 517 2.3128539323806763e-03</internalNodes>
|
||
<leafValues>
|
||
5.8098889887332916e-02 -5.7217907905578613e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 518 -3.9470911026000977e-02</internalNodes>
|
||
<leafValues>
|
||
-5.9376251697540283e-01 2.4938920978456736e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 519 1.1061299592256546e-02</internalNodes>
|
||
<leafValues>
|
||
-9.7631797194480896e-02 3.4335118532180786e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 520 1.7588209593668580e-03</internalNodes>
|
||
<leafValues>
|
||
-3.3723760396242142e-02 1.8667000532150269e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>53</maxWeakCount>
|
||
<stageThreshold>-1.3580759763717651e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 521 -4.3175318278372288e-03</internalNodes>
|
||
<leafValues>
|
||
2.6701891422271729e-01 -3.5374870896339417e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 522 1.3007350265979767e-02</internalNodes>
|
||
<leafValues>
|
||
8.7024876847863197e-03 -7.5992470979690552e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 523 4.8762829974293709e-03</internalNodes>
|
||
<leafValues>
|
||
-2.0284099876880646e-01 4.1433459520339966e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 524 -1.0705440305173397e-02</internalNodes>
|
||
<leafValues>
|
||
2.0144259929656982e-01 -2.9292601346969604e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 525 -4.4717481359839439e-03</internalNodes>
|
||
<leafValues>
|
||
2.9785239696502686e-01 -2.1515479683876038e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 526 -1.0971710085868835e-01</internalNodes>
|
||
<leafValues>
|
||
-9.0043932199478149e-01 4.1688669472932816e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 527 2.4193130433559418e-02</internalNodes>
|
||
<leafValues>
|
||
-1.7109879851341248e-01 3.1211599707603455e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 528 2.4174679070711136e-02</internalNodes>
|
||
<leafValues>
|
||
2.8407519683241844e-02 -5.3422790765762329e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 529 2.1222220733761787e-02</internalNodes>
|
||
<leafValues>
|
||
-1.1979670077562332e-01 4.4222798943519592e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 530 2.6180870831012726e-02</internalNodes>
|
||
<leafValues>
|
||
-5.3708368539810181e-01 8.5554197430610657e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 531 -4.6309800818562508e-03</internalNodes>
|
||
<leafValues>
|
||
-6.3450610637664795e-01 7.8415229916572571e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 532 -6.1208908446133137e-03</internalNodes>
|
||
<leafValues>
|
||
-5.8184450864791870e-01 5.6262150406837463e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 533 2.4345550686120987e-02</internalNodes>
|
||
<leafValues>
|
||
-8.2362763583660126e-02 5.2085632085800171e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 534 -1.0590479709208012e-02</internalNodes>
|
||
<leafValues>
|
||
-5.8450412750244141e-01 3.7550948560237885e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 535 -8.4336008876562119e-03</internalNodes>
|
||
<leafValues>
|
||
-7.2815698385238647e-01 4.3281048536300659e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 536 2.5999199599027634e-02</internalNodes>
|
||
<leafValues>
|
||
2.3103030398488045e-02 -4.7821858525276184e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 537 2.5073610246181488e-02</internalNodes>
|
||
<leafValues>
|
||
-1.0790230333805084e-01 3.5499471426010132e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 538 2.9070028662681580e-01</internalNodes>
|
||
<leafValues>
|
||
6.3703400082886219e-03 -8.6412417888641357e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 539 1.7590269446372986e-01</internalNodes>
|
||
<leafValues>
|
||
-2.5589939951896667e-01 1.6987270116806030e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 540 -3.2584410160779953e-02</internalNodes>
|
||
<leafValues>
|
||
-6.2721168994903564e-01 1.8344789743423462e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 541 -4.1382450610399246e-02</internalNodes>
|
||
<leafValues>
|
||
5.4475349187850952e-01 -1.0436189919710159e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 542 -8.6197769269347191e-03</internalNodes>
|
||
<leafValues>
|
||
1.4069239795207977e-01 -4.0490731596946716e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 543 2.0080020185559988e-03</internalNodes>
|
||
<leafValues>
|
||
9.3814283609390259e-02 -4.5978298783302307e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 544 1.1478760279715061e-02</internalNodes>
|
||
<leafValues>
|
||
-2.3005740344524384e-01 1.8548269569873810e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 545 -9.1993194073438644e-03</internalNodes>
|
||
<leafValues>
|
||
4.3196168541908264e-01 -8.4990806877613068e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 546 3.2873731106519699e-04</internalNodes>
|
||
<leafValues>
|
||
-3.2470309734344482e-01 1.2502589821815491e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 547 1.6286820173263550e-02</internalNodes>
|
||
<leafValues>
|
||
-1.6808439791202545e-01 2.0208799839019775e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 548 -8.8326708646491170e-04</internalNodes>
|
||
<leafValues>
|
||
1.3341540098190308e-01 -8.0567203462123871e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 549 -2.2098519839346409e-03</internalNodes>
|
||
<leafValues>
|
||
3.2481029629707336e-01 -1.1913210153579712e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 550 3.3911340869963169e-03</internalNodes>
|
||
<leafValues>
|
||
-6.4360022544860840e-01 9.3070819973945618e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 551 -2.1501209586858749e-02</internalNodes>
|
||
<leafValues>
|
||
1.2166000157594681e-01 -2.8132438659667969e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 552 1.3594830408692360e-02</internalNodes>
|
||
<leafValues>
|
||
-7.4954092502593994e-02 1.1320699751377106e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 553 -5.9626200236380100e-03</internalNodes>
|
||
<leafValues>
|
||
-6.0876357555389404e-01 5.5802300572395325e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 554 -7.1367057971656322e-03</internalNodes>
|
||
<leafValues>
|
||
1.3753290474414825e-01 -5.4944049566984177e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 555 3.7937159650027752e-03</internalNodes>
|
||
<leafValues>
|
||
-9.7331270575523376e-02 3.5290411114692688e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 556 4.2037001252174377e-01</internalNodes>
|
||
<leafValues>
|
||
-6.0830309987068176e-02 6.2353998422622681e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 557 -1.3953109737485647e-03</internalNodes>
|
||
<leafValues>
|
||
-4.5005550980567932e-01 8.5933342576026917e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 558 -9.1760727809742093e-04</internalNodes>
|
||
<leafValues>
|
||
-2.7361738681793213e-01 4.9933131784200668e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 559 2.6983609423041344e-03</internalNodes>
|
||
<leafValues>
|
||
-9.6326000988483429e-02 4.4493889808654785e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 560 1.8104390474036336e-03</internalNodes>
|
||
<leafValues>
|
||
5.8886051177978516e-02 -2.8511041402816772e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 561 -5.2683739922940731e-03</internalNodes>
|
||
<leafValues>
|
||
5.0250577926635742e-01 -1.0216759890317917e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 562 3.4583848901093006e-03</internalNodes>
|
||
<leafValues>
|
||
5.8127861469984055e-02 -5.9851872920989990e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 563 -3.5791560076177120e-03</internalNodes>
|
||
<leafValues>
|
||
-7.3496657609939575e-01 4.1422609239816666e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 564 5.1315352320671082e-03</internalNodes>
|
||
<leafValues>
|
||
-9.3608200550079346e-02 1.7093980312347412e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 565 -4.2571019381284714e-02</internalNodes>
|
||
<leafValues>
|
||
4.8374500870704651e-01 -7.8032270073890686e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 566 -1.4648390002548695e-02</internalNodes>
|
||
<leafValues>
|
||
-4.8706358671188354e-01 2.5201629847288132e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 567 9.3548959121108055e-03</internalNodes>
|
||
<leafValues>
|
||
3.9141140878200531e-02 -8.5132300853729248e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 568 -7.7046807855367661e-03</internalNodes>
|
||
<leafValues>
|
||
2.7295690774917603e-01 -1.0840819776058197e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 569 -6.4468376338481903e-02</internalNodes>
|
||
<leafValues>
|
||
-8.0510532855987549e-01 4.7053340822458267e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 570 -7.9486463218927383e-03</internalNodes>
|
||
<leafValues>
|
||
3.0840569734573364e-01 -1.3387249410152435e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 571 -3.9265598170459270e-03</internalNodes>
|
||
<leafValues>
|
||
3.6305388808250427e-01 -1.0540190339088440e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 572 -3.6044888198375702e-02</internalNodes>
|
||
<leafValues>
|
||
5.8140981197357178e-01 -2.9684588662348688e-04</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 573 -7.6920147985219955e-03</internalNodes>
|
||
<leafValues>
|
||
3.3190870285034180e-01 -1.0925249755382538e-01</leafValues></_></weakClassifiers></_>
|
||
<_>
|
||
<maxWeakCount>65</maxWeakCount>
|
||
<stageThreshold>-1.3411600589752197e+00</stageThreshold>
|
||
<weakClassifiers>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 574 -4.9766711890697479e-03</internalNodes>
|
||
<leafValues>
|
||
3.7934410572052002e-01 -2.4959290027618408e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 575 -3.4589890390634537e-02</internalNodes>
|
||
<leafValues>
|
||
-4.4946050643920898e-01 3.9635330438613892e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 576 1.9461639225482941e-02</internalNodes>
|
||
<leafValues>
|
||
-2.6357260346412659e-01 2.7247101068496704e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 577 4.2663760483264923e-02</internalNodes>
|
||
<leafValues>
|
||
2.9581360518932343e-02 -3.4751391410827637e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 578 5.8530770242214203e-02</internalNodes>
|
||
<leafValues>
|
||
-3.0708679556846619e-01 2.0082889497280121e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 579 -2.9736598953604698e-03</internalNodes>
|
||
<leafValues>
|
||
-5.4576981067657471e-01 2.3220159113407135e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 580 7.7464492060244083e-03</internalNodes>
|
||
<leafValues>
|
||
-1.4597670733928680e-01 3.5159158706665039e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 581 7.0320582017302513e-04</internalNodes>
|
||
<leafValues>
|
||
-3.5477969050407410e-01 1.4947199821472168e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 582 -1.3183569535613060e-02</internalNodes>
|
||
<leafValues>
|
||
4.9795240163803101e-01 -9.5576412975788116e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 583 1.1360269971191883e-02</internalNodes>
|
||
<leafValues>
|
||
4.4859439134597778e-02 -7.7702391147613525e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 584 -5.3752749226987362e-03</internalNodes>
|
||
<leafValues>
|
||
-6.0436600446701050e-01 6.3452452421188354e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 585 2.6277059223502874e-03</internalNodes>
|
||
<leafValues>
|
||
-5.9781100600957870e-02 1.6431820392608643e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 586 -1.9063310464844108e-03</internalNodes>
|
||
<leafValues>
|
||
3.4500768780708313e-01 -1.1078260093927383e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 587 -5.5438909679651260e-02</internalNodes>
|
||
<leafValues>
|
||
5.3140318393707275e-01 -3.9117269217967987e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 588 2.2990850731730461e-02</internalNodes>
|
||
<leafValues>
|
||
-1.1105979979038239e-01 3.4139779210090637e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 589 2.3013869300484657e-02</internalNodes>
|
||
<leafValues>
|
||
1.9403599202632904e-02 -3.0652850866317749e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 590 -3.2346909865736961e-03</internalNodes>
|
||
<leafValues>
|
||
1.8446859717369080e-01 -2.1846550703048706e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 591 1.9735300447791815e-03</internalNodes>
|
||
<leafValues>
|
||
-6.4886763691902161e-02 6.2509037554264069e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 592 -1.0755480267107487e-02</internalNodes>
|
||
<leafValues>
|
||
3.5955241322517395e-01 -1.1030949652194977e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 593 -2.6936439797282219e-02</internalNodes>
|
||
<leafValues>
|
||
-7.0569419860839844e-01 1.5028079971671104e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 594 2.8886420652270317e-02</internalNodes>
|
||
<leafValues>
|
||
5.0576541572809219e-02 -7.2815430164337158e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 595 5.7200351729989052e-03</internalNodes>
|
||
<leafValues>
|
||
-1.0274200141429901e-01 8.0553196370601654e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 596 -1.7981380224227905e-02</internalNodes>
|
||
<leafValues>
|
||
-7.0609301328659058e-01 5.8095961809158325e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 597 1.6353320097550750e-03</internalNodes>
|
||
<leafValues>
|
||
-9.0820826590061188e-02 1.2195230275392532e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 598 -1.8810540204867721e-03</internalNodes>
|
||
<leafValues>
|
||
3.1368181109428406e-01 -1.1835079640150070e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 599 -1.6305189579725266e-02</internalNodes>
|
||
<leafValues>
|
||
-3.4470620751380920e-01 1.0644529946148396e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 600 -1.6981370281428099e-03</internalNodes>
|
||
<leafValues>
|
||
3.6481419205665588e-01 -1.0638120025396347e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 601 2.1174369379878044e-02</internalNodes>
|
||
<leafValues>
|
||
3.1025370582938194e-02 -2.7620419859886169e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 602 -8.8443253189325333e-03</internalNodes>
|
||
<leafValues>
|
||
-6.9870138168334961e-01 5.1486968994140625e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 603 3.6929589696228504e-03</internalNodes>
|
||
<leafValues>
|
||
-6.5479710698127747e-02 2.2728489711880684e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 604 1.0892639867961407e-02</internalNodes>
|
||
<leafValues>
|
||
6.1733219772577286e-02 -6.7477071285247803e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 605 -1.2833529710769653e-01</internalNodes>
|
||
<leafValues>
|
||
2.1409809589385986e-01 -3.3962771296501160e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 606 -5.1236700266599655e-02</internalNodes>
|
||
<leafValues>
|
||
1.5942020714282990e-01 -2.4341639876365662e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 607 1.2321960180997849e-01</internalNodes>
|
||
<leafValues>
|
||
2.5586610659956932e-02 -4.7473230957984924e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 608 -1.9274000078439713e-03</internalNodes>
|
||
<leafValues>
|
||
1.0943879932165146e-01 -3.3568400144577026e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 609 -2.0102979615330696e-02</internalNodes>
|
||
<leafValues>
|
||
-5.1650160551071167e-01 2.9315050691366196e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 610 1.8281549215316772e-02</internalNodes>
|
||
<leafValues>
|
||
-6.4036741852760315e-02 6.2557631731033325e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 611 1.4739660546183586e-03</internalNodes>
|
||
<leafValues>
|
||
-1.6827440261840820e-01 1.0941269993782043e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 612 -9.0881707146763802e-03</internalNodes>
|
||
<leafValues>
|
||
2.4175269901752472e-01 -1.4523309469223022e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 613 -4.5073218643665314e-02</internalNodes>
|
||
<leafValues>
|
||
-7.3592007160186768e-01 5.9004039503633976e-03</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 614 1.9067279994487762e-02</internalNodes>
|
||
<leafValues>
|
||
-1.0756839811801910e-01 3.3758550882339478e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 615 -9.0190932154655457e-02</internalNodes>
|
||
<leafValues>
|
||
3.0061250925064087e-01 -4.3286528438329697e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 616 -2.4107230827212334e-02</internalNodes>
|
||
<leafValues>
|
||
1.4867919683456421e-01 -2.2179369628429413e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 617 4.2285379022359848e-02</internalNodes>
|
||
<leafValues>
|
||
-2.0657710731029510e-01 2.4372029304504395e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 618 -1.9224429503083229e-02</internalNodes>
|
||
<leafValues>
|
||
-4.1109448671340942e-01 8.8076941668987274e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 619 -1.8713049590587616e-02</internalNodes>
|
||
<leafValues>
|
||
-5.5512428283691406e-01 -3.5010900319321081e-05</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 620 -1.1740639805793762e-02</internalNodes>
|
||
<leafValues>
|
||
-7.4573528766632080e-01 4.6473011374473572e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 621 3.5142578184604645e-02</internalNodes>
|
||
<leafValues>
|
||
2.7216039597988129e-03 -4.9953749775886536e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 622 -6.6481479443609715e-03</internalNodes>
|
||
<leafValues>
|
||
1.9559350609779358e-01 -1.6296459734439850e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 623 7.3291230946779251e-03</internalNodes>
|
||
<leafValues>
|
||
-5.7543341070413589e-02 8.1424511969089508e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 624 -5.4579051211476326e-03</internalNodes>
|
||
<leafValues>
|
||
-5.4347038269042969e-01 5.7771220803260803e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 625 1.0465289960848168e-04</internalNodes>
|
||
<leafValues>
|
||
-1.1724419891834259e-01 1.3367609679698944e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 626 -1.7040430102497339e-03</internalNodes>
|
||
<leafValues>
|
||
3.2203149795532227e-01 -1.0900110006332397e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 627 -7.5647421181201935e-03</internalNodes>
|
||
<leafValues>
|
||
4.4239428639411926e-01 -6.8382248282432556e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 628 8.0183129757642746e-03</internalNodes>
|
||
<leafValues>
|
||
-1.5239569544792175e-01 2.4483230710029602e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 629 -1.0649990290403366e-02</internalNodes>
|
||
<leafValues>
|
||
-6.2405461072921753e-01 2.1711019799113274e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 630 -1.4240309828892350e-03</internalNodes>
|
||
<leafValues>
|
||
8.9519590139389038e-02 -3.5850891470909119e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 631 5.9712692163884640e-03</internalNodes>
|
||
<leafValues>
|
||
-4.6914869546890259e-01 5.2607439458370209e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 632 1.6963120549917221e-02</internalNodes>
|
||
<leafValues>
|
||
-6.1023771762847900e-02 5.7392549514770508e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 633 7.1414969861507416e-03</internalNodes>
|
||
<leafValues>
|
||
2.8966020792722702e-02 -3.2176148891448975e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 634 -9.5924977213144302e-03</internalNodes>
|
||
<leafValues>
|
||
-7.2410070896148682e-01 4.0414128452539444e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 635 -4.1343858465552330e-03</internalNodes>
|
||
<leafValues>
|
||
-6.6965389251708984e-01 3.3574569970369339e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 636 -4.4302479363977909e-03</internalNodes>
|
||
<leafValues>
|
||
-6.3991087675094604e-01 3.9288960397243500e-02</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 637 -2.6460499502718449e-03</internalNodes>
|
||
<leafValues>
|
||
1.0181919671595097e-02 -1.8428249657154083e-01</leafValues></_>
|
||
<_>
|
||
<internalNodes>
|
||
0 -1 638 -3.3010810613632202e-02</internalNodes>
|
||
<leafValues>
|
||
-6.4822387695312500e-01 4.6115010976791382e-02</leafValues></_></weakClassifiers></_></stages>
|
||
<features>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 8 12 -1.</_>
|
||
<_>
|
||
1 6 4 6 2.</_>
|
||
<_>
|
||
5 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 3 12 2 -1.</_>
|
||
<_>
|
||
0 4 12 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
0 18 6 1 2.</_>
|
||
<_>
|
||
6 19 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 3 6 -1.</_>
|
||
<_>
|
||
4 5 3 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 6 3 -1.</_>
|
||
<_>
|
||
8 5 2 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 16 -1.</_>
|
||
<_>
|
||
0 8 12 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 0 4 1 -1.</_>
|
||
<_>
|
||
6 0 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 8 12 -1.</_>
|
||
<_>
|
||
1 6 4 6 2.</_>
|
||
<_>
|
||
5 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 8 -1.</_>
|
||
<_>
|
||
0 4 12 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 6 6 -1.</_>
|
||
<_>
|
||
4 10 6 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 12 8 8 -1.</_>
|
||
<_>
|
||
4 12 4 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 12 8 8 -1.</_>
|
||
<_>
|
||
4 12 4 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 3 6 -1.</_>
|
||
<_>
|
||
4 5 3 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 4 6 12 -1.</_>
|
||
<_>
|
||
3 7 6 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 0 4 18 -1.</_>
|
||
<_>
|
||
8 0 2 18 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 4 18 -1.</_>
|
||
<_>
|
||
2 0 2 18 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 0 10 16 -1.</_>
|
||
<_>
|
||
1 8 10 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
0 18 6 1 2.</_>
|
||
<_>
|
||
6 19 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 6 1 -1.</_>
|
||
<_>
|
||
3 0 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 8 12 -1.</_>
|
||
<_>
|
||
1 6 4 6 2.</_>
|
||
<_>
|
||
5 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 3 2 4 -1.</_>
|
||
<_>
|
||
7 4 2 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 3 4 6 -1.</_>
|
||
<_>
|
||
3 5 4 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 12 -1.</_>
|
||
<_>
|
||
0 6 12 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 6 6 -1.</_>
|
||
<_>
|
||
4 10 6 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 3 1 8 -1.</_>
|
||
<_>
|
||
6 5 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 8 1 -1.</_>
|
||
<_>
|
||
6 0 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 0 1 8 -1.</_>
|
||
<_>
|
||
9 2 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 3 8 1 -1.</_>
|
||
<_>
|
||
6 5 4 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 4 4 13 -1.</_>
|
||
<_>
|
||
8 4 2 13 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 1 8 -1.</_>
|
||
<_>
|
||
3 4 1 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
6 18 6 1 2.</_>
|
||
<_>
|
||
0 19 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 11 1 6 -1.</_>
|
||
<_>
|
||
6 11 1 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 0 4 17 -1.</_>
|
||
<_>
|
||
8 0 2 17 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 4 17 -1.</_>
|
||
<_>
|
||
2 0 2 17 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 12 12 8 -1.</_>
|
||
<_>
|
||
0 14 12 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 7 6 2 -1.</_>
|
||
<_>
|
||
5 7 3 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 7 16 -1.</_>
|
||
<_>
|
||
3 8 7 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 3 2 -1.</_>
|
||
<_>
|
||
0 1 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 8 6 8 -1.</_>
|
||
<_>
|
||
3 12 6 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 7 8 12 -1.</_>
|
||
<_>
|
||
1 7 4 6 2.</_>
|
||
<_>
|
||
5 13 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 2 2 -1.</_>
|
||
<_>
|
||
6 5 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 3 1 6 -1.</_>
|
||
<_>
|
||
5 5 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 11 2 7 -1.</_>
|
||
<_>
|
||
10 11 1 7 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 11 7 2 -1.</_>
|
||
<_>
|
||
2 11 7 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 16 10 4 -1.</_>
|
||
<_>
|
||
2 16 5 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 17 1 3 -1.</_>
|
||
<_>
|
||
0 18 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 18 1 2 -1.</_>
|
||
<_>
|
||
11 19 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 1 2 -1.</_>
|
||
<_>
|
||
0 19 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 7 3 3 -1.</_>
|
||
<_>
|
||
9 8 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 4 3 -1.</_>
|
||
<_>
|
||
7 5 2 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 4 4 3 -1.</_>
|
||
<_>
|
||
8 5 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 11 5 4 -1.</_>
|
||
<_>
|
||
4 11 5 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 4 2 4 -1.</_>
|
||
<_>
|
||
7 4 2 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 4 4 2 -1.</_>
|
||
<_>
|
||
5 4 2 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 9 2 8 -1.</_>
|
||
<_>
|
||
8 9 2 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 9 8 2 -1.</_>
|
||
<_>
|
||
4 9 4 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 8 -1.</_>
|
||
<_>
|
||
0 4 12 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 8 1 -1.</_>
|
||
<_>
|
||
2 0 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 7 12 4 -1.</_>
|
||
<_>
|
||
3 7 6 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 16 1 2 -1.</_>
|
||
<_>
|
||
0 17 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 16 6 4 -1.</_>
|
||
<_>
|
||
3 18 6 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 16 10 4 -1.</_>
|
||
<_>
|
||
5 16 5 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 6 4 12 -1.</_>
|
||
<_>
|
||
8 6 2 12 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 5 4 11 -1.</_>
|
||
<_>
|
||
2 5 2 11 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
6 18 6 1 2.</_>
|
||
<_>
|
||
0 19 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 7 8 1 -1.</_>
|
||
<_>
|
||
5 7 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 10 -1.</_>
|
||
<_>
|
||
0 5 12 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 3 6 12 -1.</_>
|
||
<_>
|
||
3 7 6 4 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 0 10 1 -1.</_>
|
||
<_>
|
||
1 0 5 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 7 6 6 -1.</_>
|
||
<_>
|
||
4 9 6 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 2 1 8 -1.</_>
|
||
<_>
|
||
7 4 1 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 2 8 4 -1.</_>
|
||
<_>
|
||
2 4 8 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 7 12 7 -1.</_>
|
||
<_>
|
||
3 7 6 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 16 6 4 -1.</_>
|
||
<_>
|
||
3 18 6 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 2 1 18 -1.</_>
|
||
<_>
|
||
10 11 1 9 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 4 1 16 -1.</_>
|
||
<_>
|
||
1 12 1 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 0 4 18 -1.</_>
|
||
<_>
|
||
4 9 4 9 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 4 1 -1.</_>
|
||
<_>
|
||
2 0 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 2 1 8 -1.</_>
|
||
<_>
|
||
7 4 1 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 6 2 -1.</_>
|
||
<_>
|
||
8 5 2 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 11 2 6 -1.</_>
|
||
<_>
|
||
7 11 2 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 8 6 4 -1.</_>
|
||
<_>
|
||
6 10 2 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 8 2 -1.</_>
|
||
<_>
|
||
2 1 8 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 3 3 7 -1.</_>
|
||
<_>
|
||
1 3 1 7 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 1 4 8 -1.</_>
|
||
<_>
|
||
8 5 4 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 16 12 4 -1.</_>
|
||
<_>
|
||
0 17 12 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 1 3 8 -1.</_>
|
||
<_>
|
||
8 5 3 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 1 1 8 -1.</_>
|
||
<_>
|
||
3 5 1 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 0 1 8 -1.</_>
|
||
<_>
|
||
6 2 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 1 2 7 -1.</_>
|
||
<_>
|
||
5 1 1 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 6 3 5 -1.</_>
|
||
<_>
|
||
10 6 1 5 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 13 12 6 -1.</_>
|
||
<_>
|
||
0 15 12 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 10 -1.</_>
|
||
<_>
|
||
6 0 6 5 2.</_>
|
||
<_>
|
||
0 5 6 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 4 3 7 -1.</_>
|
||
<_>
|
||
1 4 1 7 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 2 8 2 -1.</_>
|
||
<_>
|
||
2 3 8 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 1 1 6 -1.</_>
|
||
<_>
|
||
5 3 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 5 4 7 -1.</_>
|
||
<_>
|
||
7 5 2 7 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 17 12 3 -1.</_>
|
||
<_>
|
||
6 17 6 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 10 8 10 -1.</_>
|
||
<_>
|
||
6 10 4 5 2.</_>
|
||
<_>
|
||
2 15 4 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 2 20 -1.</_>
|
||
<_>
|
||
3 5 2 10 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 8 12 -1.</_>
|
||
<_>
|
||
1 6 4 6 2.</_>
|
||
<_>
|
||
5 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 3 12 2 -1.</_>
|
||
<_>
|
||
0 4 12 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 5 7 6 -1.</_>
|
||
<_>
|
||
1 7 7 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 14 -1.</_>
|
||
<_>
|
||
0 7 12 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
0 18 6 1 2.</_>
|
||
<_>
|
||
6 19 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 10 2 4 -1.</_>
|
||
<_>
|
||
10 10 2 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 4 2 1 -1.</_>
|
||
<_>
|
||
3 4 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 7 2 3 -1.</_>
|
||
<_>
|
||
9 8 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 10 2 -1.</_>
|
||
<_>
|
||
0 1 10 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 8 5 4 -1.</_>
|
||
<_>
|
||
7 9 5 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 7 2 3 -1.</_>
|
||
<_>
|
||
1 8 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 16 2 2 -1.</_>
|
||
<_>
|
||
6 16 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 16 2 2 -1.</_>
|
||
<_>
|
||
6 16 1 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 4 16 -1.</_>
|
||
<_>
|
||
2 0 2 16 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 0 2 3 -1.</_>
|
||
<_>
|
||
5 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 8 12 -1.</_>
|
||
<_>
|
||
1 6 4 6 2.</_>
|
||
<_>
|
||
5 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 11 6 9 -1.</_>
|
||
<_>
|
||
6 11 3 9 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 11 6 9 -1.</_>
|
||
<_>
|
||
3 11 3 9 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 3 5 -1.</_>
|
||
<_>
|
||
10 12 1 5 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 0 3 1 -1.</_>
|
||
<_>
|
||
2 1 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 3 5 -1.</_>
|
||
<_>
|
||
10 12 1 5 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 11 5 3 -1.</_>
|
||
<_>
|
||
2 12 5 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 6 1 3 -1.</_>
|
||
<_>
|
||
5 7 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 6 3 1 -1.</_>
|
||
<_>
|
||
7 7 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 9 3 2 -1.</_>
|
||
<_>
|
||
7 10 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 18 1 2 -1.</_>
|
||
<_>
|
||
1 19 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 18 1 2 -1.</_>
|
||
<_>
|
||
10 19 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 18 1 2 -1.</_>
|
||
<_>
|
||
1 19 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 9 3 2 -1.</_>
|
||
<_>
|
||
7 10 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 9 3 2 -1.</_>
|
||
<_>
|
||
2 10 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 8 4 3 -1.</_>
|
||
<_>
|
||
8 9 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 4 3 -1.</_>
|
||
<_>
|
||
0 9 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 8 -1.</_>
|
||
<_>
|
||
0 4 12 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 4 8 11 -1.</_>
|
||
<_>
|
||
2 4 4 11 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 0 1 3 -1.</_>
|
||
<_>
|
||
9 1 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 0 2 3 -1.</_>
|
||
<_>
|
||
1 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
6 18 6 1 2.</_>
|
||
<_>
|
||
0 19 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 6 6 -1.</_>
|
||
<_>
|
||
8 5 2 6 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 12 2 6 -1.</_>
|
||
<_>
|
||
10 12 1 6 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 12 6 2 -1.</_>
|
||
<_>
|
||
2 12 6 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 14 8 5 -1.</_>
|
||
<_>
|
||
4 14 4 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 15 8 3 -1.</_>
|
||
<_>
|
||
4 15 4 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 7 6 6 -1.</_>
|
||
<_>
|
||
8 9 2 6 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 7 6 6 -1.</_>
|
||
<_>
|
||
4 9 6 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 4 2 4 -1.</_>
|
||
<_>
|
||
5 5 2 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 3 3 -1.</_>
|
||
<_>
|
||
0 9 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 15 2 3 -1.</_>
|
||
<_>
|
||
7 16 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 15 3 2 -1.</_>
|
||
<_>
|
||
5 16 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 14 3 3 -1.</_>
|
||
<_>
|
||
8 15 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 5 3 -1.</_>
|
||
<_>
|
||
2 13 5 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 2 -1.</_>
|
||
<_>
|
||
3 0 6 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 9 3 4 -1.</_>
|
||
<_>
|
||
0 10 3 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 10 4 6 -1.</_>
|
||
<_>
|
||
8 12 4 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 10 4 6 -1.</_>
|
||
<_>
|
||
0 12 4 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 2 3 -1.</_>
|
||
<_>
|
||
5 6 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 3 2 -1.</_>
|
||
<_>
|
||
7 6 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 8 1 -1.</_>
|
||
<_>
|
||
2 0 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 5 3 2 -1.</_>
|
||
<_>
|
||
0 6 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 14 2 3 -1.</_>
|
||
<_>
|
||
7 15 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 14 3 2 -1.</_>
|
||
<_>
|
||
5 15 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 2 3 8 -1.</_>
|
||
<_>
|
||
3 4 3 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 7 8 12 -1.</_>
|
||
<_>
|
||
7 7 4 6 2.</_>
|
||
<_>
|
||
3 13 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 6 4 3 -1.</_>
|
||
<_>
|
||
4 7 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 11 6 8 -1.</_>
|
||
<_>
|
||
3 13 6 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 12 2 6 -1.</_>
|
||
<_>
|
||
6 12 2 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 3 8 16 -1.</_>
|
||
<_>
|
||
8 3 4 8 2.</_>
|
||
<_>
|
||
4 11 4 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 2 8 16 -1.</_>
|
||
<_>
|
||
0 2 4 8 2.</_>
|
||
<_>
|
||
4 10 4 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 0 3 2 -1.</_>
|
||
<_>
|
||
9 1 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 3 2 -1.</_>
|
||
<_>
|
||
0 1 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 6 1 2 -1.</_>
|
||
<_>
|
||
9 6 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 1 12 2 -1.</_>
|
||
<_>
|
||
4 1 4 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 4 3 5 -1.</_>
|
||
<_>
|
||
10 4 1 5 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 3 4 6 -1.</_>
|
||
<_>
|
||
1 3 2 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 17 1 2 -1.</_>
|
||
<_>
|
||
11 18 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 17 1 2 -1.</_>
|
||
<_>
|
||
0 18 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 17 1 3 -1.</_>
|
||
<_>
|
||
11 18 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 17 1 3 -1.</_>
|
||
<_>
|
||
0 18 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 4 12 12 -1.</_>
|
||
<_>
|
||
0 8 12 4 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 5 3 6 -1.</_>
|
||
<_>
|
||
2 5 1 6 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 4 3 -1.</_>
|
||
<_>
|
||
5 5 4 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 4 -1.</_>
|
||
<_>
|
||
7 5 1 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 4 2 3 -1.</_>
|
||
<_>
|
||
10 5 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 4 2 3 -1.</_>
|
||
<_>
|
||
0 5 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 3 3 -1.</_>
|
||
<_>
|
||
8 11 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 10 6 3 -1.</_>
|
||
<_>
|
||
6 10 3 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 2 4 2 -1.</_>
|
||
<_>
|
||
3 2 2 1 2.</_>
|
||
<_>
|
||
5 3 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 6 6 -1.</_>
|
||
<_>
|
||
8 10 2 6 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 6 6 -1.</_>
|
||
<_>
|
||
4 10 6 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 1 6 -1.</_>
|
||
<_>
|
||
4 6 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 6 1 -1.</_>
|
||
<_>
|
||
8 6 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 3 3 -1.</_>
|
||
<_>
|
||
5 6 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 3 3 -1.</_>
|
||
<_>
|
||
7 6 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 16 10 4 -1.</_>
|
||
<_>
|
||
2 16 5 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 10 -1.</_>
|
||
<_>
|
||
0 5 12 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 0 2 2 -1.</_>
|
||
<_>
|
||
10 0 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 2 2 -1.</_>
|
||
<_>
|
||
1 0 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 15 2 2 -1.</_>
|
||
<_>
|
||
7 15 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 2 6 -1.</_>
|
||
<_>
|
||
0 8 1 3 2.</_>
|
||
<_>
|
||
1 11 1 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 11 2 4 -1.</_>
|
||
<_>
|
||
9 12 2 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 16 10 4 -1.</_>
|
||
<_>
|
||
5 16 5 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 18 10 2 -1.</_>
|
||
<_>
|
||
1 19 10 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 9 2 4 -1.</_>
|
||
<_>
|
||
0 9 1 2 2.</_>
|
||
<_>
|
||
1 11 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 12 3 3 -1.</_>
|
||
<_>
|
||
8 13 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 3 3 -1.</_>
|
||
<_>
|
||
4 13 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 4 3 -1.</_>
|
||
<_>
|
||
5 5 4 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 4 -1.</_>
|
||
<_>
|
||
7 5 1 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 12 3 3 -1.</_>
|
||
<_>
|
||
8 13 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 3 3 -1.</_>
|
||
<_>
|
||
4 13 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 4 -1.</_>
|
||
<_>
|
||
5 5 3 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 4 3 -1.</_>
|
||
<_>
|
||
7 5 2 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 18 2 2 -1.</_>
|
||
<_>
|
||
9 19 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 18 2 2 -1.</_>
|
||
<_>
|
||
1 19 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 6 2 3 -1.</_>
|
||
<_>
|
||
10 7 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 1 2 4 -1.</_>
|
||
<_>
|
||
0 1 1 2 2.</_>
|
||
<_>
|
||
1 3 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 0 2 3 -1.</_>
|
||
<_>
|
||
6 0 1 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 13 2 2 -1.</_>
|
||
<_>
|
||
2 13 1 1 2.</_>
|
||
<_>
|
||
3 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 6 2 3 -1.</_>
|
||
<_>
|
||
10 7 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 1 4 3 -1.</_>
|
||
<_>
|
||
2 2 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 4 3 3 -1.</_>
|
||
<_>
|
||
6 5 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 4 2 2 -1.</_>
|
||
<_>
|
||
5 5 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 10 2 6 -1.</_>
|
||
<_>
|
||
10 10 1 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 12 4 4 -1.</_>
|
||
<_>
|
||
2 12 2 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 3 6 -1.</_>
|
||
<_>
|
||
4 5 3 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 6 3 -1.</_>
|
||
<_>
|
||
8 5 2 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 12 2 3 -1.</_>
|
||
<_>
|
||
8 13 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 12 1 6 -1.</_>
|
||
<_>
|
||
6 12 1 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 16 3 2 -1.</_>
|
||
<_>
|
||
5 17 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 3 2 -1.</_>
|
||
<_>
|
||
4 13 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 0 1 2 -1.</_>
|
||
<_>
|
||
11 0 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 4 11 -1.</_>
|
||
<_>
|
||
2 0 2 11 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 11 2 3 -1.</_>
|
||
<_>
|
||
9 12 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 11 3 2 -1.</_>
|
||
<_>
|
||
3 12 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 3 5 -1.</_>
|
||
<_>
|
||
10 12 1 5 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 11 5 3 -1.</_>
|
||
<_>
|
||
2 12 5 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 4 2 -1.</_>
|
||
<_>
|
||
8 13 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 12 4 2 -1.</_>
|
||
<_>
|
||
0 13 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 13 2 2 -1.</_>
|
||
<_>
|
||
9 13 1 1 2.</_>
|
||
<_>
|
||
8 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 7 5 3 -1.</_>
|
||
<_>
|
||
0 8 5 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 13 2 2 -1.</_>
|
||
<_>
|
||
9 13 1 1 2.</_>
|
||
<_>
|
||
8 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 13 2 2 -1.</_>
|
||
<_>
|
||
2 13 1 1 2.</_>
|
||
<_>
|
||
3 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 8 5 4 -1.</_>
|
||
<_>
|
||
7 9 5 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 5 2 8 -1.</_>
|
||
<_>
|
||
0 5 1 4 2.</_>
|
||
<_>
|
||
1 9 1 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 8 3 4 -1.</_>
|
||
<_>
|
||
8 9 3 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 8 3 4 -1.</_>
|
||
<_>
|
||
1 9 3 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 16 -1.</_>
|
||
<_>
|
||
0 8 12 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 4 2 -1.</_>
|
||
<_>
|
||
0 0 2 1 2.</_>
|
||
<_>
|
||
2 1 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 0 3 3 -1.</_>
|
||
<_>
|
||
8 0 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 5 3 -1.</_>
|
||
<_>
|
||
2 13 5 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 12 4 -1.</_>
|
||
<_>
|
||
3 8 6 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 12 2 2 -1.</_>
|
||
<_>
|
||
2 12 1 1 2.</_>
|
||
<_>
|
||
3 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 15 2 3 -1.</_>
|
||
<_>
|
||
10 16 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 8 1 -1.</_>
|
||
<_>
|
||
2 0 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 6 8 12 -1.</_>
|
||
<_>
|
||
7 6 4 6 2.</_>
|
||
<_>
|
||
3 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 4 3 3 -1.</_>
|
||
<_>
|
||
6 5 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 6 8 12 -1.</_>
|
||
<_>
|
||
8 6 4 6 2.</_>
|
||
<_>
|
||
4 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 5 10 14 -1.</_>
|
||
<_>
|
||
0 5 5 7 2.</_>
|
||
<_>
|
||
5 12 5 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 2 10 4 -1.</_>
|
||
<_>
|
||
1 4 10 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 15 1 2 -1.</_>
|
||
<_>
|
||
0 16 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 0 4 3 -1.</_>
|
||
<_>
|
||
6 1 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 14 2 2 -1.</_>
|
||
<_>
|
||
5 14 1 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 9 12 1 -1.</_>
|
||
<_>
|
||
0 9 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 5 3 3 -1.</_>
|
||
<_>
|
||
0 6 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 4 3 -1.</_>
|
||
<_>
|
||
7 13 4 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 12 3 4 -1.</_>
|
||
<_>
|
||
5 13 1 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 0 2 3 -1.</_>
|
||
<_>
|
||
7 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 2 3 -1.</_>
|
||
<_>
|
||
3 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 0 2 2 -1.</_>
|
||
<_>
|
||
10 0 1 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 2 2 -1.</_>
|
||
<_>
|
||
2 0 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 0 2 1 -1.</_>
|
||
<_>
|
||
10 0 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
0 18 6 1 2.</_>
|
||
<_>
|
||
6 19 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 7 8 10 -1.</_>
|
||
<_>
|
||
2 12 8 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 9 2 10 -1.</_>
|
||
<_>
|
||
1 9 1 10 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 9 3 2 -1.</_>
|
||
<_>
|
||
10 9 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 9 3 2 -1.</_>
|
||
<_>
|
||
1 9 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 6 4 3 -1.</_>
|
||
<_>
|
||
8 7 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 5 2 3 -1.</_>
|
||
<_>
|
||
0 6 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 8 3 3 -1.</_>
|
||
<_>
|
||
9 8 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 4 12 -1.</_>
|
||
<_>
|
||
2 8 2 12 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 7 1 3 -1.</_>
|
||
<_>
|
||
5 8 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 3 -1.</_>
|
||
<_>
|
||
7 5 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 0 2 1 -1.</_>
|
||
<_>
|
||
10 0 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 1 2 -1.</_>
|
||
<_>
|
||
2 0 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 3 1 -1.</_>
|
||
<_>
|
||
10 10 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 10 3 1 -1.</_>
|
||
<_>
|
||
1 10 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 12 2 3 -1.</_>
|
||
<_>
|
||
9 13 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 12 3 2 -1.</_>
|
||
<_>
|
||
3 13 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 3 3 -1.</_>
|
||
<_>
|
||
9 11 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 10 3 3 -1.</_>
|
||
<_>
|
||
0 11 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 3 2 -1.</_>
|
||
<_>
|
||
0 1 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 6 2 -1.</_>
|
||
<_>
|
||
6 0 3 1 2.</_>
|
||
<_>
|
||
3 1 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 7 8 12 -1.</_>
|
||
<_>
|
||
1 7 4 6 2.</_>
|
||
<_>
|
||
5 13 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 6 4 1 -1.</_>
|
||
<_>
|
||
7 6 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 0 10 2 -1.</_>
|
||
<_>
|
||
6 0 5 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 2 1 4 -1.</_>
|
||
<_>
|
||
10 2 1 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 2 4 1 -1.</_>
|
||
<_>
|
||
2 2 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 15 8 4 -1.</_>
|
||
<_>
|
||
4 15 4 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 14 8 5 -1.</_>
|
||
<_>
|
||
4 14 4 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 4 5 -1.</_>
|
||
<_>
|
||
8 12 2 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 10 4 7 -1.</_>
|
||
<_>
|
||
2 10 2 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 0 3 3 -1.</_>
|
||
<_>
|
||
5 1 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 3 1 -1.</_>
|
||
<_>
|
||
7 9 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 6 3 3 -1.</_>
|
||
<_>
|
||
9 7 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 6 3 3 -1.</_>
|
||
<_>
|
||
0 7 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 13 4 2 -1.</_>
|
||
<_>
|
||
8 14 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 6 2 3 -1.</_>
|
||
<_>
|
||
0 7 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 8 3 3 -1.</_>
|
||
<_>
|
||
9 8 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 12 5 4 -1.</_>
|
||
<_>
|
||
0 14 5 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 16 4 2 -1.</_>
|
||
<_>
|
||
8 16 2 1 2.</_>
|
||
<_>
|
||
6 17 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 12 2 2 -1.</_>
|
||
<_>
|
||
1 12 1 1 2.</_>
|
||
<_>
|
||
2 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 2 2 -1.</_>
|
||
<_>
|
||
9 12 1 1 2.</_>
|
||
<_>
|
||
8 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 16 1 2 -1.</_>
|
||
<_>
|
||
0 17 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 2 2 -1.</_>
|
||
<_>
|
||
9 12 1 1 2.</_>
|
||
<_>
|
||
8 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 12 2 2 -1.</_>
|
||
<_>
|
||
2 12 1 1 2.</_>
|
||
<_>
|
||
3 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 13 2 3 -1.</_>
|
||
<_>
|
||
7 14 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 13 3 2 -1.</_>
|
||
<_>
|
||
5 14 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 2 4 -1.</_>
|
||
<_>
|
||
10 10 1 2 2.</_>
|
||
<_>
|
||
9 12 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 10 2 4 -1.</_>
|
||
<_>
|
||
1 10 1 2 2.</_>
|
||
<_>
|
||
2 12 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 16 2 2 -1.</_>
|
||
<_>
|
||
7 16 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 8 3 3 -1.</_>
|
||
<_>
|
||
2 8 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 10 3 3 -1.</_>
|
||
<_>
|
||
8 11 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 0 3 3 -1.</_>
|
||
<_>
|
||
5 0 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 8 4 6 -1.</_>
|
||
<_>
|
||
5 11 4 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 6 1 -1.</_>
|
||
<_>
|
||
6 5 3 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 15 2 2 -1.</_>
|
||
<_>
|
||
7 15 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 15 2 2 -1.</_>
|
||
<_>
|
||
5 15 1 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 3 3 3 -1.</_>
|
||
<_>
|
||
9 4 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 4 3 4 -1.</_>
|
||
<_>
|
||
4 5 3 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 0 1 2 -1.</_>
|
||
<_>
|
||
11 0 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 0 2 1 -1.</_>
|
||
<_>
|
||
1 0 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 6 8 12 -1.</_>
|
||
<_>
|
||
8 6 4 6 2.</_>
|
||
<_>
|
||
4 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 8 12 -1.</_>
|
||
<_>
|
||
1 6 4 6 2.</_>
|
||
<_>
|
||
5 12 4 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 0 2 3 -1.</_>
|
||
<_>
|
||
9 1 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 3 2 -1.</_>
|
||
<_>
|
||
3 1 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 10 4 3 -1.</_>
|
||
<_>
|
||
7 11 4 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 14 -1.</_>
|
||
<_>
|
||
0 7 12 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
6 18 6 1 2.</_>
|
||
<_>
|
||
0 19 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 17 2 3 -1.</_>
|
||
<_>
|
||
0 18 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 8 2 6 -1.</_>
|
||
<_>
|
||
11 8 1 3 2.</_>
|
||
<_>
|
||
10 11 1 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 2 6 -1.</_>
|
||
<_>
|
||
0 8 1 3 2.</_>
|
||
<_>
|
||
1 11 1 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 17 2 3 -1.</_>
|
||
<_>
|
||
10 18 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 17 2 3 -1.</_>
|
||
<_>
|
||
0 18 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 8 3 3 -1.</_>
|
||
<_>
|
||
10 8 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 6 3 14 -1.</_>
|
||
<_>
|
||
0 13 3 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 8 3 3 -1.</_>
|
||
<_>
|
||
10 8 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 3 3 -1.</_>
|
||
<_>
|
||
1 8 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 9 3 3 -1.</_>
|
||
<_>
|
||
8 10 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 9 3 3 -1.</_>
|
||
<_>
|
||
4 10 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 7 4 1 -1.</_>
|
||
<_>
|
||
8 7 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 7 4 1 -1.</_>
|
||
<_>
|
||
2 7 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 7 -1.</_>
|
||
<_>
|
||
0 0 6 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 4 3 -1.</_>
|
||
<_>
|
||
2 13 4 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 10 3 3 -1.</_>
|
||
<_>
|
||
8 11 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 10 3 3 -1.</_>
|
||
<_>
|
||
1 11 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 13 1 6 -1.</_>
|
||
<_>
|
||
4 15 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 13 6 1 -1.</_>
|
||
<_>
|
||
8 15 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 0 2 3 -1.</_>
|
||
<_>
|
||
5 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 8 3 4 -1.</_>
|
||
<_>
|
||
1 9 3 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 0 3 2 -1.</_>
|
||
<_>
|
||
10 1 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 2 3 -1.</_>
|
||
<_>
|
||
2 1 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 17 2 1 -1.</_>
|
||
<_>
|
||
10 17 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 17 2 1 -1.</_>
|
||
<_>
|
||
1 17 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 13 2 2 -1.</_>
|
||
<_>
|
||
9 13 1 1 2.</_>
|
||
<_>
|
||
8 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 13 2 2 -1.</_>
|
||
<_>
|
||
2 13 1 1 2.</_>
|
||
<_>
|
||
3 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 3 2 -1.</_>
|
||
<_>
|
||
10 10 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 10 3 2 -1.</_>
|
||
<_>
|
||
1 10 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 7 3 3 -1.</_>
|
||
<_>
|
||
9 8 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 4 -1.</_>
|
||
<_>
|
||
7 5 1 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 4 3 7 -1.</_>
|
||
<_>
|
||
9 4 1 7 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 9 3 4 -1.</_>
|
||
<_>
|
||
2 10 3 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 4 3 7 -1.</_>
|
||
<_>
|
||
9 4 1 7 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 6 3 1 -1.</_>
|
||
<_>
|
||
7 7 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 0 1 3 -1.</_>
|
||
<_>
|
||
9 1 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 1 3 -1.</_>
|
||
<_>
|
||
2 1 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 1 8 -1.</_>
|
||
<_>
|
||
9 15 1 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 3 12 2 -1.</_>
|
||
<_>
|
||
0 4 12 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 11 2 5 -1.</_>
|
||
<_>
|
||
10 11 1 5 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 11 1 8 -1.</_>
|
||
<_>
|
||
2 15 1 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 12 6 7 -1.</_>
|
||
<_>
|
||
6 12 3 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 4 2 -1.</_>
|
||
<_>
|
||
0 0 2 1 2.</_>
|
||
<_>
|
||
2 1 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 12 6 7 -1.</_>
|
||
<_>
|
||
6 12 3 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 12 6 7 -1.</_>
|
||
<_>
|
||
3 12 3 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 2 1 8 -1.</_>
|
||
<_>
|
||
6 4 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 2 8 1 -1.</_>
|
||
<_>
|
||
6 4 4 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 3 3 -1.</_>
|
||
<_>
|
||
8 11 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 10 3 3 -1.</_>
|
||
<_>
|
||
4 11 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 8 2 -1.</_>
|
||
<_>
|
||
4 0 4 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 7 3 2 -1.</_>
|
||
<_>
|
||
7 8 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 4 6 12 -1.</_>
|
||
<_>
|
||
3 8 6 4 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 7 3 3 -1.</_>
|
||
<_>
|
||
0 8 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 11 4 6 -1.</_>
|
||
<_>
|
||
8 13 4 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 11 4 6 -1.</_>
|
||
<_>
|
||
0 13 4 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 17 8 2 -1.</_>
|
||
<_>
|
||
7 17 4 1 2.</_>
|
||
<_>
|
||
3 18 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 14 10 5 -1.</_>
|
||
<_>
|
||
5 14 5 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 11 3 1 -1.</_>
|
||
<_>
|
||
9 11 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 11 3 1 -1.</_>
|
||
<_>
|
||
2 11 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 1 3 6 -1.</_>
|
||
<_>
|
||
10 2 1 6 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 18 -1.</_>
|
||
<_>
|
||
0 9 12 9 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 6 1 2 -1.</_>
|
||
<_>
|
||
8 6 1 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 3 -1.</_>
|
||
<_>
|
||
7 5 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 1 3 6 -1.</_>
|
||
<_>
|
||
10 2 1 6 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 1 6 3 -1.</_>
|
||
<_>
|
||
2 2 6 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 2 3 -1.</_>
|
||
<_>
|
||
8 12 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 11 3 2 -1.</_>
|
||
<_>
|
||
4 12 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 5 4 4 -1.</_>
|
||
<_>
|
||
8 6 4 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 5 4 4 -1.</_>
|
||
<_>
|
||
0 6 4 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 17 3 3 -1.</_>
|
||
<_>
|
||
5 18 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 15 1 3 -1.</_>
|
||
<_>
|
||
4 16 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 10 2 4 -1.</_>
|
||
<_>
|
||
11 10 1 2 2.</_>
|
||
<_>
|
||
10 12 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 10 2 4 -1.</_>
|
||
<_>
|
||
0 10 1 2 2.</_>
|
||
<_>
|
||
1 12 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 4 3 6 -1.</_>
|
||
<_>
|
||
10 4 1 6 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 4 3 6 -1.</_>
|
||
<_>
|
||
1 4 1 6 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 7 2 6 -1.</_>
|
||
<_>
|
||
11 7 1 3 2.</_>
|
||
<_>
|
||
10 10 1 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 7 2 6 -1.</_>
|
||
<_>
|
||
0 7 1 3 2.</_>
|
||
<_>
|
||
1 10 1 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 8 2 3 -1.</_>
|
||
<_>
|
||
10 9 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 3 3 -1.</_>
|
||
<_>
|
||
0 9 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 4 1 -1.</_>
|
||
<_>
|
||
2 0 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 6 4 3 -1.</_>
|
||
<_>
|
||
4 7 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 10 10 -1.</_>
|
||
<_>
|
||
0 8 5 5 2.</_>
|
||
<_>
|
||
5 13 5 5 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 0 1 8 -1.</_>
|
||
<_>
|
||
8 0 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 4 1 -1.</_>
|
||
<_>
|
||
3 6 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 0 1 8 -1.</_>
|
||
<_>
|
||
8 0 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 13 1 6 -1.</_>
|
||
<_>
|
||
6 13 1 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 12 2 -1.</_>
|
||
<_>
|
||
0 19 12 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 18 1 2 -1.</_>
|
||
<_>
|
||
3 19 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 10 2 6 -1.</_>
|
||
<_>
|
||
10 10 1 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 10 2 6 -1.</_>
|
||
<_>
|
||
1 10 1 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 0 1 8 -1.</_>
|
||
<_>
|
||
8 0 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 2 4 2 -1.</_>
|
||
<_>
|
||
4 2 2 1 2.</_>
|
||
<_>
|
||
6 3 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 12 2 -1.</_>
|
||
<_>
|
||
0 8 6 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 0 4 2 -1.</_>
|
||
<_>
|
||
5 0 2 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 0 3 3 -1.</_>
|
||
<_>
|
||
7 0 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 3 3 -1.</_>
|
||
<_>
|
||
4 0 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 1 3 -1.</_>
|
||
<_>
|
||
5 6 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 1 2 4 -1.</_>
|
||
<_>
|
||
0 1 1 2 2.</_>
|
||
<_>
|
||
1 3 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 1 2 4 -1.</_>
|
||
<_>
|
||
11 1 1 2 2.</_>
|
||
<_>
|
||
10 3 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 1 2 4 -1.</_>
|
||
<_>
|
||
0 1 1 2 2.</_>
|
||
<_>
|
||
1 3 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 8 3 3 -1.</_>
|
||
<_>
|
||
9 9 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 16 2 2 -1.</_>
|
||
<_>
|
||
6 16 1 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 2 1 -1.</_>
|
||
<_>
|
||
6 8 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 3 1 -1.</_>
|
||
<_>
|
||
7 6 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 5 2 3 -1.</_>
|
||
<_>
|
||
5 6 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 3 3 -1.</_>
|
||
<_>
|
||
1 7 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 1 1 8 -1.</_>
|
||
<_>
|
||
6 3 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 1 8 1 -1.</_>
|
||
<_>
|
||
6 3 4 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 13 3 4 -1.</_>
|
||
<_>
|
||
7 14 3 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 5 1 8 -1.</_>
|
||
<_>
|
||
5 7 1 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 3 3 -1.</_>
|
||
<_>
|
||
8 12 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 13 4 3 -1.</_>
|
||
<_>
|
||
5 14 2 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 4 3 4 -1.</_>
|
||
<_>
|
||
9 5 1 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 4 -1.</_>
|
||
<_>
|
||
7 5 1 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 4 3 4 -1.</_>
|
||
<_>
|
||
9 5 1 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 4 4 3 -1.</_>
|
||
<_>
|
||
3 5 4 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 4 2 -1.</_>
|
||
<_>
|
||
6 9 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 8 5 2 -1.</_>
|
||
<_>
|
||
2 9 5 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 13 6 4 -1.</_>
|
||
<_>
|
||
6 15 6 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 12 1 -1.</_>
|
||
<_>
|
||
6 0 6 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 1 1 3 -1.</_>
|
||
<_>
|
||
10 2 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 1 3 1 -1.</_>
|
||
<_>
|
||
2 2 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 4 3 7 -1.</_>
|
||
<_>
|
||
9 4 1 7 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 4 3 7 -1.</_>
|
||
<_>
|
||
2 4 1 7 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 0 2 2 -1.</_>
|
||
<_>
|
||
10 0 1 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 3 4 -1.</_>
|
||
<_>
|
||
2 6 1 4 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 0 2 3 -1.</_>
|
||
<_>
|
||
10 0 1 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 3 2 -1.</_>
|
||
<_>
|
||
2 0 3 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 5 1 3 -1.</_>
|
||
<_>
|
||
10 6 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 0 2 3 -1.</_>
|
||
<_>
|
||
5 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 1 6 9 -1.</_>
|
||
<_>
|
||
6 4 6 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 1 2 9 -1.</_>
|
||
<_>
|
||
4 4 2 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 1 8 18 -1.</_>
|
||
<_>
|
||
8 1 4 9 2.</_>
|
||
<_>
|
||
4 10 4 9 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 14 4 6 -1.</_>
|
||
<_>
|
||
4 17 4 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 1 2 4 -1.</_>
|
||
<_>
|
||
11 1 1 2 2.</_>
|
||
<_>
|
||
10 3 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 1 2 4 -1.</_>
|
||
<_>
|
||
0 1 1 2 2.</_>
|
||
<_>
|
||
1 3 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 0 4 17 -1.</_>
|
||
<_>
|
||
5 0 2 17 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 4 17 -1.</_>
|
||
<_>
|
||
5 0 2 17 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 9 2 8 -1.</_>
|
||
<_>
|
||
8 9 2 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 12 12 -1.</_>
|
||
<_>
|
||
6 8 6 12 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 12 2 2 -1.</_>
|
||
<_>
|
||
8 12 1 1 2.</_>
|
||
<_>
|
||
7 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 9 4 3 -1.</_>
|
||
<_>
|
||
0 10 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 2 3 -1.</_>
|
||
<_>
|
||
5 5 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 0 4 2 -1.</_>
|
||
<_>
|
||
4 0 2 1 2.</_>
|
||
<_>
|
||
6 1 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 0 1 12 -1.</_>
|
||
<_>
|
||
11 6 1 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 2 1 18 -1.</_>
|
||
<_>
|
||
1 11 1 9 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 4 5 -1.</_>
|
||
<_>
|
||
6 5 2 5 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 7 8 2 -1.</_>
|
||
<_>
|
||
5 7 4 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 0 2 2 -1.</_>
|
||
<_>
|
||
10 0 1 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 2 2 -1.</_>
|
||
<_>
|
||
2 0 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 9 2 8 -1.</_>
|
||
<_>
|
||
8 9 2 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 9 8 2 -1.</_>
|
||
<_>
|
||
4 9 4 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 2 3 -1.</_>
|
||
<_>
|
||
8 12 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 11 3 2 -1.</_>
|
||
<_>
|
||
4 12 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 2 2 -1.</_>
|
||
<_>
|
||
9 12 1 1 2.</_>
|
||
<_>
|
||
8 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 12 2 2 -1.</_>
|
||
<_>
|
||
2 12 1 1 2.</_>
|
||
<_>
|
||
3 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 13 2 2 -1.</_>
|
||
<_>
|
||
8 13 1 1 2.</_>
|
||
<_>
|
||
7 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 13 2 2 -1.</_>
|
||
<_>
|
||
3 13 1 1 2.</_>
|
||
<_>
|
||
4 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 3 3 -1.</_>
|
||
<_>
|
||
9 11 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 2 7 3 -1.</_>
|
||
<_>
|
||
2 3 7 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 18 2 2 -1.</_>
|
||
<_>
|
||
10 19 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 18 2 2 -1.</_>
|
||
<_>
|
||
0 19 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 2 2 1 -1.</_>
|
||
<_>
|
||
10 2 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 2 2 1 -1.</_>
|
||
<_>
|
||
1 2 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 3 3 6 -1.</_>
|
||
<_>
|
||
10 3 1 6 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 3 3 6 -1.</_>
|
||
<_>
|
||
1 3 1 6 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 3 3 -1.</_>
|
||
<_>
|
||
9 11 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 10 3 3 -1.</_>
|
||
<_>
|
||
0 11 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 2 2 -1.</_>
|
||
<_>
|
||
10 11 1 1 2.</_>
|
||
<_>
|
||
9 12 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 11 2 2 -1.</_>
|
||
<_>
|
||
1 11 1 1 2.</_>
|
||
<_>
|
||
2 12 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 12 1 3 -1.</_>
|
||
<_>
|
||
8 13 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 12 4 2 -1.</_>
|
||
<_>
|
||
6 12 4 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 12 1 3 -1.</_>
|
||
<_>
|
||
8 13 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 3 1 -1.</_>
|
||
<_>
|
||
4 13 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 12 2 2 -1.</_>
|
||
<_>
|
||
8 12 1 1 2.</_>
|
||
<_>
|
||
7 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 2 2 -1.</_>
|
||
<_>
|
||
3 12 1 1 2.</_>
|
||
<_>
|
||
4 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 6 1 3 -1.</_>
|
||
<_>
|
||
10 7 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 3 2 -1.</_>
|
||
<_>
|
||
0 1 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 16 1 4 -1.</_>
|
||
<_>
|
||
11 17 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 16 1 4 -1.</_>
|
||
<_>
|
||
0 17 1 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 16 1 3 -1.</_>
|
||
<_>
|
||
11 17 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 16 1 3 -1.</_>
|
||
<_>
|
||
0 17 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 2 3 -1.</_>
|
||
<_>
|
||
5 9 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 8 3 2 -1.</_>
|
||
<_>
|
||
7 9 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 14 2 2 -1.</_>
|
||
<_>
|
||
9 14 1 1 2.</_>
|
||
<_>
|
||
8 15 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 6 5 3 -1.</_>
|
||
<_>
|
||
3 7 5 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 0 1 3 -1.</_>
|
||
<_>
|
||
9 1 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 1 3 -1.</_>
|
||
<_>
|
||
2 1 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 5 4 11 -1.</_>
|
||
<_>
|
||
8 5 2 11 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 15 4 2 -1.</_>
|
||
<_>
|
||
1 15 2 1 2.</_>
|
||
<_>
|
||
3 16 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 3 3 10 -1.</_>
|
||
<_>
|
||
8 3 1 10 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 3 3 10 -1.</_>
|
||
<_>
|
||
3 3 1 10 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 13 3 2 -1.</_>
|
||
<_>
|
||
9 14 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 13 2 3 -1.</_>
|
||
<_>
|
||
3 14 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 1 12 6 -1.</_>
|
||
<_>
|
||
0 4 12 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 6 2 4 -1.</_>
|
||
<_>
|
||
1 7 2 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 4 2 3 -1.</_>
|
||
<_>
|
||
10 5 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 6 2 -1.</_>
|
||
<_>
|
||
3 0 3 1 2.</_>
|
||
<_>
|
||
6 1 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 0 3 3 -1.</_>
|
||
<_>
|
||
8 0 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 3 3 -1.</_>
|
||
<_>
|
||
3 0 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 3 -1.</_>
|
||
<_>
|
||
5 5 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 3 -1.</_>
|
||
<_>
|
||
7 5 1 3 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 2 8 16 -1.</_>
|
||
<_>
|
||
8 2 4 8 2.</_>
|
||
<_>
|
||
4 10 4 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 2 8 16 -1.</_>
|
||
<_>
|
||
0 2 4 8 2.</_>
|
||
<_>
|
||
4 10 4 8 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 13 6 1 -1.</_>
|
||
<_>
|
||
6 13 3 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 13 1 6 -1.</_>
|
||
<_>
|
||
6 13 1 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 9 2 7 -1.</_>
|
||
<_>
|
||
10 9 1 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 18 1 2 -1.</_>
|
||
<_>
|
||
3 19 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 18 8 2 -1.</_>
|
||
<_>
|
||
6 18 4 1 2.</_>
|
||
<_>
|
||
2 19 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 5 4 3 -1.</_>
|
||
<_>
|
||
4 6 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 4 4 2 -1.</_>
|
||
<_>
|
||
4 5 4 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 9 2 9 -1.</_>
|
||
<_>
|
||
1 9 1 9 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 13 2 2 -1.</_>
|
||
<_>
|
||
9 13 1 1 2.</_>
|
||
<_>
|
||
8 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 13 2 2 -1.</_>
|
||
<_>
|
||
2 13 1 1 2.</_>
|
||
<_>
|
||
3 14 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 0 1 12 -1.</_>
|
||
<_>
|
||
11 6 1 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 5 8 4 -1.</_>
|
||
<_>
|
||
6 7 4 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 10 3 3 -1.</_>
|
||
<_>
|
||
7 11 3 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 0 3 2 -1.</_>
|
||
<_>
|
||
5 0 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 11 3 3 -1.</_>
|
||
<_>
|
||
9 12 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 14 2 2 -1.</_>
|
||
<_>
|
||
3 14 1 1 2.</_>
|
||
<_>
|
||
4 15 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 13 12 7 -1.</_>
|
||
<_>
|
||
0 13 6 7 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 0 2 1 -1.</_>
|
||
<_>
|
||
1 0 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 1 2 2 -1.</_>
|
||
<_>
|
||
11 1 1 1 2.</_>
|
||
<_>
|
||
10 2 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 1 2 2 -1.</_>
|
||
<_>
|
||
0 1 1 1 2.</_>
|
||
<_>
|
||
1 2 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 1 2 2 -1.</_>
|
||
<_>
|
||
11 1 1 1 2.</_>
|
||
<_>
|
||
10 2 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 1 2 2 -1.</_>
|
||
<_>
|
||
0 1 1 1 2.</_>
|
||
<_>
|
||
1 2 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
10 5 1 3 -1.</_>
|
||
<_>
|
||
10 6 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 5 1 3 -1.</_>
|
||
<_>
|
||
1 6 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 0 2 3 -1.</_>
|
||
<_>
|
||
6 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 2 8 1 -1.</_>
|
||
<_>
|
||
4 2 4 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 8 4 3 -1.</_>
|
||
<_>
|
||
8 9 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 8 4 3 -1.</_>
|
||
<_>
|
||
0 9 4 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 9 3 2 -1.</_>
|
||
<_>
|
||
9 9 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 9 3 9 -1.</_>
|
||
<_>
|
||
5 12 1 3 9.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 9 3 2 -1.</_>
|
||
<_>
|
||
8 9 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 9 3 2 -1.</_>
|
||
<_>
|
||
3 9 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 6 3 1 -1.</_>
|
||
<_>
|
||
10 7 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 6 1 3 -1.</_>
|
||
<_>
|
||
2 7 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 2 4 2 -1.</_>
|
||
<_>
|
||
3 2 2 1 2.</_>
|
||
<_>
|
||
5 3 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 4 3 -1.</_>
|
||
<_>
|
||
5 4 4 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 3 4 -1.</_>
|
||
<_>
|
||
7 4 1 4 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 0 4 16 -1.</_>
|
||
<_>
|
||
8 0 2 16 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 13 12 4 -1.</_>
|
||
<_>
|
||
3 13 6 4 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 0 3 2 -1.</_>
|
||
<_>
|
||
9 1 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 0 2 3 -1.</_>
|
||
<_>
|
||
2 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 6 1 -1.</_>
|
||
<_>
|
||
3 0 3 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 2 3 -1.</_>
|
||
<_>
|
||
3 1 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 4 3 3 -1.</_>
|
||
<_>
|
||
9 5 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 4 3 3 -1.</_>
|
||
<_>
|
||
0 5 3 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 11 2 2 -1.</_>
|
||
<_>
|
||
9 11 1 1 2.</_>
|
||
<_>
|
||
8 12 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 11 2 2 -1.</_>
|
||
<_>
|
||
2 11 1 1 2.</_>
|
||
<_>
|
||
3 12 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 10 1 8 -1.</_>
|
||
<_>
|
||
7 12 1 4 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 3 3 8 -1.</_>
|
||
<_>
|
||
2 3 1 8 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 8 2 4 -1.</_>
|
||
<_>
|
||
8 10 2 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 15 3 4 -1.</_>
|
||
<_>
|
||
2 16 3 2 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 4 3 6 -1.</_>
|
||
<_>
|
||
9 4 1 6 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 4 3 6 -1.</_>
|
||
<_>
|
||
2 4 1 6 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 2 3 -1.</_>
|
||
<_>
|
||
7 13 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 10 8 1 -1.</_>
|
||
<_>
|
||
5 12 4 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 15 1 3 -1.</_>
|
||
<_>
|
||
7 16 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 16 6 3 -1.</_>
|
||
<_>
|
||
0 17 6 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 2 2 -1.</_>
|
||
<_>
|
||
9 12 1 1 2.</_>
|
||
<_>
|
||
8 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
2 12 2 2 -1.</_>
|
||
<_>
|
||
2 12 1 1 2.</_>
|
||
<_>
|
||
3 13 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 12 1 3 -1.</_>
|
||
<_>
|
||
8 13 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 11 2 2 -1.</_>
|
||
<_>
|
||
3 11 1 1 2.</_>
|
||
<_>
|
||
4 12 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 15 1 3 -1.</_>
|
||
<_>
|
||
7 16 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 3 1 -1.</_>
|
||
<_>
|
||
4 13 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 12 2 3 -1.</_>
|
||
<_>
|
||
8 13 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 12 3 2 -1.</_>
|
||
<_>
|
||
4 13 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 9 2 6 -1.</_>
|
||
<_>
|
||
6 9 2 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 14 12 6 -1.</_>
|
||
<_>
|
||
0 17 12 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 3 3 6 -1.</_>
|
||
<_>
|
||
4 5 3 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 5 2 3 -1.</_>
|
||
<_>
|
||
5 5 1 3 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 2 3 -1.</_>
|
||
<_>
|
||
5 6 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 5 3 2 -1.</_>
|
||
<_>
|
||
7 6 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 8 5 2 -1.</_>
|
||
<_>
|
||
4 9 5 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 4 3 5 -1.</_>
|
||
<_>
|
||
1 4 1 5 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 2 3 8 -1.</_>
|
||
<_>
|
||
10 2 1 8 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
0 2 3 8 -1.</_>
|
||
<_>
|
||
1 2 1 8 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 9 2 6 -1.</_>
|
||
<_>
|
||
6 9 2 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 9 6 5 -1.</_>
|
||
<_>
|
||
6 9 3 5 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 0 1 12 -1.</_>
|
||
<_>
|
||
11 6 1 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 1 6 1 -1.</_>
|
||
<_>
|
||
8 3 2 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 12 1 3 -1.</_>
|
||
<_>
|
||
7 13 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 12 3 1 -1.</_>
|
||
<_>
|
||
5 13 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 2 2 18 -1.</_>
|
||
<_>
|
||
7 2 1 18 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 2 2 18 -1.</_>
|
||
<_>
|
||
4 2 1 18 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
8 15 1 3 -1.</_>
|
||
<_>
|
||
7 16 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
4 15 3 1 -1.</_>
|
||
<_>
|
||
5 16 1 1 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
7 14 2 2 -1.</_>
|
||
<_>
|
||
8 14 1 1 2.</_>
|
||
<_>
|
||
7 15 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 14 2 2 -1.</_>
|
||
<_>
|
||
3 14 1 1 2.</_>
|
||
<_>
|
||
4 15 1 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
5 5 2 3 -1.</_>
|
||
<_>
|
||
5 6 2 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 4 3 2 -1.</_>
|
||
<_>
|
||
7 5 1 2 3.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 0 3 2 -1.</_>
|
||
<_>
|
||
7 0 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 7 2 2 -1.</_>
|
||
<_>
|
||
6 7 2 1 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 0 1 12 -1.</_>
|
||
<_>
|
||
11 6 1 6 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 6 4 2 -1.</_>
|
||
<_>
|
||
7 7 2 2 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
6 0 3 2 -1.</_>
|
||
<_>
|
||
7 0 1 2 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 0 3 3 -1.</_>
|
||
<_>
|
||
4 0 1 3 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
11 4 1 3 -1.</_>
|
||
<_>
|
||
11 5 1 1 3.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
1 7 2 2 -1.</_>
|
||
<_>
|
||
1 8 2 1 2.</_></rects></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
9 1 1 6 -1.</_>
|
||
<_>
|
||
9 1 1 3 2.</_></rects>
|
||
<tilted>1</tilted></_>
|
||
<_>
|
||
<rects>
|
||
<_>
|
||
3 1 6 1 -1.</_>
|
||
<_>
|
||
3 1 3 1 2.</_></rects>
|
||
<tilted>1</tilted></_></features></cascade>
|
||
</opencv_storage>
|