mirror of
https://github.com/opencv/opencv.git
synced 2024-12-02 07:39:57 +08:00
f87f0cc481
(with this else-branch, argument contour2 would not be used at all)
784 lines
26 KiB
C++
784 lines
26 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*
|
|
* Implementation of the paper Shape Matching and Object Recognition Using Shape Contexts
|
|
* Belongie et al., 2002 by Juan Manuel Perez for GSoC 2013.
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/core.hpp"
|
|
#include "scd_def.hpp"
|
|
#include <limits>
|
|
|
|
namespace cv
|
|
{
|
|
class ShapeContextDistanceExtractorImpl : public ShapeContextDistanceExtractor
|
|
{
|
|
public:
|
|
/* Constructors */
|
|
ShapeContextDistanceExtractorImpl(int _nAngularBins, int _nRadialBins, float _innerRadius, float _outerRadius, int _iterations,
|
|
const Ptr<HistogramCostExtractor> &_comparer, const Ptr<ShapeTransformer> &_transformer)
|
|
{
|
|
nAngularBins=_nAngularBins;
|
|
nRadialBins=_nRadialBins;
|
|
innerRadius=_innerRadius;
|
|
outerRadius=_outerRadius;
|
|
rotationInvariant=false;
|
|
comparer=_comparer;
|
|
iterations=_iterations;
|
|
transformer=_transformer;
|
|
bendingEnergyWeight=0.3f;
|
|
imageAppearanceWeight=0.0f;
|
|
shapeContextWeight=1.0f;
|
|
sigma=10.0f;
|
|
name_ = "ShapeDistanceExtractor.SCD";
|
|
}
|
|
|
|
/* Destructor */
|
|
~ShapeContextDistanceExtractorImpl()
|
|
{
|
|
}
|
|
|
|
virtual AlgorithmInfo* info() const { return 0; }
|
|
|
|
//! the main operator
|
|
virtual float computeDistance(InputArray contour1, InputArray contour2);
|
|
|
|
//! Setters/Getters
|
|
virtual void setAngularBins(int _nAngularBins){CV_Assert(_nAngularBins>0); nAngularBins=_nAngularBins;}
|
|
virtual int getAngularBins() const {return nAngularBins;}
|
|
|
|
virtual void setRadialBins(int _nRadialBins){CV_Assert(_nRadialBins>0); nRadialBins=_nRadialBins;}
|
|
virtual int getRadialBins() const {return nRadialBins;}
|
|
|
|
virtual void setInnerRadius(float _innerRadius) {CV_Assert(_innerRadius>0); innerRadius=_innerRadius;}
|
|
virtual float getInnerRadius() const {return innerRadius;}
|
|
|
|
virtual void setOuterRadius(float _outerRadius) {CV_Assert(_outerRadius>0); outerRadius=_outerRadius;}
|
|
virtual float getOuterRadius() const {return outerRadius;}
|
|
|
|
virtual void setRotationInvariant(bool _rotationInvariant) {rotationInvariant=_rotationInvariant;}
|
|
virtual bool getRotationInvariant() const {return rotationInvariant;}
|
|
|
|
virtual void setCostExtractor(Ptr<HistogramCostExtractor> _comparer) { comparer = _comparer; }
|
|
virtual Ptr<HistogramCostExtractor> getCostExtractor() const { return comparer; }
|
|
|
|
virtual void setShapeContextWeight(float _shapeContextWeight) {shapeContextWeight=_shapeContextWeight;}
|
|
virtual float getShapeContextWeight() const {return shapeContextWeight;}
|
|
|
|
virtual void setImageAppearanceWeight(float _imageAppearanceWeight) {imageAppearanceWeight=_imageAppearanceWeight;}
|
|
virtual float getImageAppearanceWeight() const {return imageAppearanceWeight;}
|
|
|
|
virtual void setBendingEnergyWeight(float _bendingEnergyWeight) {bendingEnergyWeight=_bendingEnergyWeight;}
|
|
virtual float getBendingEnergyWeight() const {return bendingEnergyWeight;}
|
|
|
|
virtual void setStdDev(float _sigma) {sigma=_sigma;}
|
|
virtual float getStdDev() const {return sigma;}
|
|
|
|
virtual void setImages(InputArray _image1, InputArray _image2)
|
|
{
|
|
Mat image1_=_image1.getMat(), image2_=_image2.getMat();
|
|
CV_Assert((image1_.depth()==0) && (image2_.depth()==0));
|
|
image1=image1_;
|
|
image2=image2_;
|
|
}
|
|
|
|
virtual void getImages(OutputArray _image1, OutputArray _image2) const
|
|
{
|
|
CV_Assert((!image1.empty()) && (!image2.empty()));
|
|
_image1.create(image1.size(), image1.type());
|
|
_image2.create(image2.size(), image2.type());
|
|
_image1.getMat()=image1;
|
|
_image2.getMat()=image2;
|
|
}
|
|
|
|
virtual void setIterations(int _iterations) {CV_Assert(_iterations>0); iterations=_iterations;}
|
|
virtual int getIterations() const {return iterations;}
|
|
|
|
virtual void setTransformAlgorithm(Ptr<ShapeTransformer> _transformer) {transformer=_transformer;}
|
|
virtual Ptr<ShapeTransformer> getTransformAlgorithm() const {return transformer;}
|
|
|
|
//! write/read
|
|
virtual void write(FileStorage& fs) const
|
|
{
|
|
fs << "name" << name_
|
|
<< "nRads" << nRadialBins
|
|
<< "nAngs" << nAngularBins
|
|
<< "iters" << iterations
|
|
<< "img_1" << image1
|
|
<< "img_2" << image2
|
|
<< "beWei" << bendingEnergyWeight
|
|
<< "scWei" << shapeContextWeight
|
|
<< "iaWei" << imageAppearanceWeight
|
|
<< "costF" << costFlag
|
|
<< "rotIn" << rotationInvariant
|
|
<< "sigma" << sigma;
|
|
}
|
|
|
|
virtual void read(const FileNode& fn)
|
|
{
|
|
CV_Assert( (String)fn["name"] == name_ );
|
|
nRadialBins = (int)fn["nRads"];
|
|
nAngularBins = (int)fn["nAngs"];
|
|
iterations = (int)fn["iters"];
|
|
bendingEnergyWeight = (float)fn["beWei"];
|
|
shapeContextWeight = (float)fn["scWei"];
|
|
imageAppearanceWeight = (float)fn["iaWei"];
|
|
costFlag = (int)fn["costF"];
|
|
sigma = (float)fn["sigma"];
|
|
}
|
|
|
|
protected:
|
|
int nAngularBins;
|
|
int nRadialBins;
|
|
float innerRadius;
|
|
float outerRadius;
|
|
bool rotationInvariant;
|
|
int costFlag;
|
|
int iterations;
|
|
Ptr<ShapeTransformer> transformer;
|
|
Ptr<HistogramCostExtractor> comparer;
|
|
Mat image1;
|
|
Mat image2;
|
|
float bendingEnergyWeight;
|
|
float imageAppearanceWeight;
|
|
float shapeContextWeight;
|
|
float sigma;
|
|
String name_;
|
|
};
|
|
|
|
float ShapeContextDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2)
|
|
{
|
|
// Checking //
|
|
Mat sset1=contour1.getMat(), sset2=contour2.getMat(), set1, set2;
|
|
if (set1.type() != CV_32F)
|
|
sset1.convertTo(set1, CV_32F);
|
|
else
|
|
sset1.copyTo(set1);
|
|
|
|
if (set2.type() != CV_32F)
|
|
sset2.convertTo(set2, CV_32F);
|
|
else
|
|
sset2.copyTo(set2);
|
|
|
|
CV_Assert((set1.channels()==2) && (set1.cols>0));
|
|
CV_Assert((set2.channels()==2) && (set2.cols>0));
|
|
if (imageAppearanceWeight!=0)
|
|
{
|
|
CV_Assert((!image1.empty()) && (!image2.empty()));
|
|
}
|
|
|
|
// Initializing Extractor, Descriptor structures and Matcher //
|
|
SCD set1SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant);
|
|
Mat set1SCD;
|
|
SCD set2SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant);
|
|
Mat set2SCD;
|
|
SCDMatcher matcher;
|
|
std::vector<DMatch> matches;
|
|
|
|
// Distance components (The output is a linear combination of these 3) //
|
|
float sDistance=0, bEnergy=0, iAppearance=0;
|
|
float beta;
|
|
|
|
// Initializing some variables //
|
|
std::vector<int> inliers1, inliers2;
|
|
|
|
Ptr<ThinPlateSplineShapeTransformer> transDown = transformer.dynamicCast<ThinPlateSplineShapeTransformer>();
|
|
|
|
Mat warpedImage;
|
|
int ii, jj, pt;
|
|
|
|
for (ii=0; ii<iterations; ii++)
|
|
{
|
|
// Extract SCD descriptor in the set1 //
|
|
set1SCE.extractSCD(set1, set1SCD, inliers1);
|
|
|
|
// Extract SCD descriptor of the set2 (TARGET) //
|
|
set2SCE.extractSCD(set2, set2SCD, inliers2, set1SCE.getMeanDistance());
|
|
|
|
// regularization parameter with annealing rate annRate //
|
|
beta=set1SCE.getMeanDistance();
|
|
beta *= beta;
|
|
|
|
// match //
|
|
matcher.matchDescriptors(set1SCD, set2SCD, matches, comparer, inliers1, inliers2);
|
|
|
|
// apply TPS transform //
|
|
if ( !transDown.empty() )
|
|
transDown->setRegularizationParameter(beta);
|
|
transformer->estimateTransformation(set1, set2, matches);
|
|
bEnergy += transformer->applyTransformation(set1, set1);
|
|
|
|
// Image appearance //
|
|
if (imageAppearanceWeight!=0)
|
|
{
|
|
// Have to accumulate the transformation along all the iterations
|
|
if (ii==0)
|
|
{
|
|
if ( !transDown.empty() )
|
|
{
|
|
image2.copyTo(warpedImage);
|
|
}
|
|
else
|
|
{
|
|
image1.copyTo(warpedImage);
|
|
}
|
|
}
|
|
transformer->warpImage(warpedImage, warpedImage);
|
|
}
|
|
}
|
|
|
|
Mat gaussWindow, diffIm;
|
|
if (imageAppearanceWeight!=0)
|
|
{
|
|
// compute appearance cost
|
|
if ( !transDown.empty() )
|
|
{
|
|
resize(warpedImage, warpedImage, image1.size());
|
|
Mat temp=(warpedImage-image1);
|
|
multiply(temp, temp, diffIm);
|
|
}
|
|
else
|
|
{
|
|
resize(warpedImage, warpedImage, image2.size());
|
|
Mat temp=(warpedImage-image2);
|
|
multiply(temp, temp, diffIm);
|
|
}
|
|
gaussWindow = Mat::zeros(warpedImage.rows, warpedImage.cols, CV_32F);
|
|
for (pt=0; pt<sset1.cols; pt++)
|
|
{
|
|
Point2f p = sset1.at<Point2f>(0,pt);
|
|
for (ii=0; ii<diffIm.rows; ii++)
|
|
{
|
|
for (jj=0; jj<diffIm.cols; jj++)
|
|
{
|
|
float val = float(std::exp( -float( (p.x-jj)*(p.x-jj) + (p.y-ii)*(p.y-ii) )/(2*sigma*sigma) ) / (sigma*sigma*2*CV_PI));
|
|
gaussWindow.at<float>(ii,jj) += val;
|
|
}
|
|
}
|
|
}
|
|
|
|
Mat appIm(diffIm.rows, diffIm.cols, CV_32F);
|
|
for (ii=0; ii<diffIm.rows; ii++)
|
|
{
|
|
for (jj=0; jj<diffIm.cols; jj++)
|
|
{
|
|
float elema=float( diffIm.at<uchar>(ii,jj) )/255;
|
|
float elemb=gaussWindow.at<float>(ii,jj);
|
|
appIm.at<float>(ii,jj) = elema*elemb;
|
|
}
|
|
}
|
|
iAppearance = float(cv::sum(appIm)[0]/sset1.cols);
|
|
}
|
|
sDistance = matcher.getMatchingCost();
|
|
|
|
return (sDistance*shapeContextWeight+bEnergy*bendingEnergyWeight+iAppearance*imageAppearanceWeight);
|
|
}
|
|
|
|
Ptr <ShapeContextDistanceExtractor> createShapeContextDistanceExtractor(int nAngularBins, int nRadialBins, float innerRadius, float outerRadius, int iterations,
|
|
const Ptr<HistogramCostExtractor> &comparer, const Ptr<ShapeTransformer> &transformer)
|
|
{
|
|
return Ptr <ShapeContextDistanceExtractor> ( new ShapeContextDistanceExtractorImpl(nAngularBins, nRadialBins, innerRadius,
|
|
outerRadius, iterations, comparer, transformer) );
|
|
}
|
|
|
|
//! SCD
|
|
void SCD::extractSCD(cv::Mat &contour, cv::Mat &descriptors, const std::vector<int> &queryInliers, const float _meanDistance)
|
|
{
|
|
cv::Mat contourMat = contour;
|
|
cv::Mat disMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F);
|
|
cv::Mat angleMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F);
|
|
|
|
std::vector<double> logspaces, angspaces;
|
|
logarithmicSpaces(logspaces);
|
|
angularSpaces(angspaces);
|
|
buildNormalizedDistanceMatrix(contourMat, disMatrix, queryInliers, _meanDistance);
|
|
buildAngleMatrix(contourMat, angleMatrix);
|
|
|
|
// Now, build the descriptor matrix (each row is a point) //
|
|
descriptors = cv::Mat::zeros(contourMat.cols, descriptorSize(), CV_32F);
|
|
|
|
for (int ptidx=0; ptidx<contourMat.cols; ptidx++)
|
|
{
|
|
for (int cmp=0; cmp<contourMat.cols; cmp++)
|
|
{
|
|
if (ptidx==cmp) continue;
|
|
if ((int)queryInliers.size()>0)
|
|
{
|
|
if (queryInliers[ptidx]==0 || queryInliers[cmp]==0) continue; //avoid outliers
|
|
}
|
|
|
|
int angidx=-1, radidx=-1;
|
|
for (int i=0; i<nRadialBins; i++)
|
|
{
|
|
if (disMatrix.at<float>(ptidx, cmp)<logspaces[i])
|
|
{
|
|
radidx=i;
|
|
break;
|
|
}
|
|
}
|
|
for (int i=0; i<nAngularBins; i++)
|
|
{
|
|
if (angleMatrix.at<float>(ptidx, cmp)<angspaces[i])
|
|
{
|
|
angidx=i;
|
|
break;
|
|
}
|
|
}
|
|
if (angidx!=-1 && radidx!=-1)
|
|
{
|
|
int idx = angidx+radidx*nAngularBins;
|
|
descriptors.at<float>(ptidx, idx)++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SCD::logarithmicSpaces(std::vector<double> &vecSpaces) const
|
|
{
|
|
double logmin=log10(innerRadius);
|
|
double logmax=log10(outerRadius);
|
|
double delta=(logmax-logmin)/(nRadialBins-1);
|
|
double accdelta=0;
|
|
|
|
for (int i=0; i<nRadialBins; i++)
|
|
{
|
|
double val = std::pow(10,logmin+accdelta);
|
|
vecSpaces.push_back(val);
|
|
accdelta += delta;
|
|
}
|
|
}
|
|
|
|
void SCD::angularSpaces(std::vector<double> &vecSpaces) const
|
|
{
|
|
double delta=2*CV_PI/nAngularBins;
|
|
double val=0;
|
|
|
|
for (int i=0; i<nAngularBins; i++)
|
|
{
|
|
val += delta;
|
|
vecSpaces.push_back(val);
|
|
}
|
|
}
|
|
|
|
void SCD::buildNormalizedDistanceMatrix(cv::Mat &contour, cv::Mat &disMatrix, const std::vector<int> &queryInliers, const float _meanDistance)
|
|
{
|
|
cv::Mat contourMat = contour;
|
|
cv::Mat mask(disMatrix.rows, disMatrix.cols, CV_8U);
|
|
|
|
for (int i=0; i<contourMat.cols; i++)
|
|
{
|
|
for (int j=0; j<contourMat.cols; j++)
|
|
{
|
|
disMatrix.at<float>(i,j) = (float)norm( cv::Mat(contourMat.at<cv::Point2f>(0,i)-contourMat.at<cv::Point2f>(0,j)), cv::NORM_L2 );
|
|
if (_meanDistance<0)
|
|
{
|
|
if (queryInliers.size()>0)
|
|
{
|
|
mask.at<char>(i,j)=char(queryInliers[j] && queryInliers[i]);
|
|
}
|
|
else
|
|
{
|
|
mask.at<char>(i,j)=1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (_meanDistance<0)
|
|
{
|
|
meanDistance=(float)mean(disMatrix, mask)[0];
|
|
}
|
|
else
|
|
{
|
|
meanDistance=_meanDistance;
|
|
}
|
|
disMatrix/=meanDistance+FLT_EPSILON;
|
|
}
|
|
|
|
void SCD::buildAngleMatrix(cv::Mat &contour, cv::Mat &angleMatrix) const
|
|
{
|
|
cv::Mat contourMat = contour;
|
|
|
|
// if descriptor is rotationInvariant compute massCenter //
|
|
cv::Point2f massCenter(0,0);
|
|
if (rotationInvariant)
|
|
{
|
|
for (int i=0; i<contourMat.cols; i++)
|
|
{
|
|
massCenter+=contourMat.at<cv::Point2f>(0,i);
|
|
}
|
|
massCenter.x=massCenter.x/(float)contourMat.cols;
|
|
massCenter.y=massCenter.y/(float)contourMat.cols;
|
|
}
|
|
|
|
|
|
for (int i=0; i<contourMat.cols; i++)
|
|
{
|
|
for (int j=0; j<contourMat.cols; j++)
|
|
{
|
|
if (i==j)
|
|
{
|
|
angleMatrix.at<float>(i,j)=0.0;
|
|
}
|
|
else
|
|
{
|
|
cv::Point2f dif = contourMat.at<cv::Point2f>(0,i) - contourMat.at<cv::Point2f>(0,j);
|
|
angleMatrix.at<float>(i,j) = std::atan2(dif.y, dif.x);
|
|
|
|
if (rotationInvariant)
|
|
{
|
|
cv::Point2f refPt = contourMat.at<cv::Point2f>(0,i) - massCenter;
|
|
float refAngle = atan2(refPt.y, refPt.x);
|
|
angleMatrix.at<float>(i,j) -= refAngle;
|
|
}
|
|
angleMatrix.at<float>(i,j) = float(fmod(double(angleMatrix.at<float>(i,j)+(double)FLT_EPSILON),2*CV_PI)+CV_PI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//! SCDMatcher
|
|
void SCDMatcher::matchDescriptors(cv::Mat &descriptors1, cv::Mat &descriptors2, std::vector<cv::DMatch> &matches,
|
|
cv::Ptr<cv::HistogramCostExtractor> &comparer, std::vector<int> &inliers1, std::vector<int> &inliers2)
|
|
{
|
|
matches.clear();
|
|
|
|
// Build the cost Matrix between descriptors //
|
|
cv::Mat costMat;
|
|
buildCostMatrix(descriptors1, descriptors2, costMat, comparer);
|
|
|
|
// Solve the matching problem using the hungarian method //
|
|
hungarian(costMat, matches, inliers1, inliers2, descriptors1.rows, descriptors2.rows);
|
|
}
|
|
|
|
void SCDMatcher::buildCostMatrix(const cv::Mat &descriptors1, const cv::Mat &descriptors2,
|
|
cv::Mat &costMatrix, cv::Ptr<cv::HistogramCostExtractor> &comparer) const
|
|
{
|
|
comparer->buildCostMatrix(descriptors1, descriptors2, costMatrix);
|
|
}
|
|
|
|
void SCDMatcher::hungarian(cv::Mat &costMatrix, std::vector<cv::DMatch> &outMatches, std::vector<int> &inliers1,
|
|
std::vector<int> &inliers2, int sizeScd1, int sizeScd2)
|
|
{
|
|
std::vector<int> free(costMatrix.rows, 0), collist(costMatrix.rows, 0);
|
|
std::vector<int> matches(costMatrix.rows, 0), colsol(costMatrix.rows), rowsol(costMatrix.rows);
|
|
std::vector<float> d(costMatrix.rows), pred(costMatrix.rows), v(costMatrix.rows);
|
|
|
|
const float LOWV = 1e-10f;
|
|
bool unassignedfound;
|
|
int i=0, imin=0, numfree=0, prvnumfree=0, f=0, i0=0, k=0, freerow=0;
|
|
int j=0, j1=0, j2=0, endofpath=0, last=0, low=0, up=0;
|
|
float min=0, h=0, umin=0, usubmin=0, v2=0;
|
|
|
|
// COLUMN REDUCTION //
|
|
for (j = costMatrix.rows-1; j >= 0; j--)
|
|
{
|
|
// find minimum cost over rows.
|
|
min = costMatrix.at<float>(0,j);
|
|
imin = 0;
|
|
for (i = 1; i < costMatrix.rows; i++)
|
|
if (costMatrix.at<float>(i,j) < min)
|
|
{
|
|
min = costMatrix.at<float>(i,j);
|
|
imin = i;
|
|
}
|
|
v[j] = min;
|
|
|
|
if (++matches[imin] == 1)
|
|
{
|
|
rowsol[imin] = j;
|
|
colsol[j] = imin;
|
|
}
|
|
else
|
|
{
|
|
colsol[j]=-1;
|
|
}
|
|
}
|
|
|
|
// REDUCTION TRANSFER //
|
|
for (i=0; i<costMatrix.rows; i++)
|
|
{
|
|
if (matches[i] == 0)
|
|
{
|
|
free[numfree++] = i;
|
|
}
|
|
else
|
|
{
|
|
if (matches[i] == 1)
|
|
{
|
|
j1=rowsol[i];
|
|
min=std::numeric_limits<float>::max();
|
|
for (j=0; j<costMatrix.rows; j++)
|
|
{
|
|
if (j!=j1)
|
|
{
|
|
if (costMatrix.at<float>(i,j)-v[j] < min)
|
|
{
|
|
min=costMatrix.at<float>(i,j)-v[j];
|
|
}
|
|
}
|
|
}
|
|
v[j1] = v[j1]-min;
|
|
}
|
|
}
|
|
}
|
|
// AUGMENTING ROW REDUCTION //
|
|
int loopcnt = 0;
|
|
do
|
|
{
|
|
loopcnt++;
|
|
k=0;
|
|
prvnumfree=numfree;
|
|
numfree=0;
|
|
while (k < prvnumfree)
|
|
{
|
|
i=free[k];
|
|
k++;
|
|
umin = costMatrix.at<float>(i,0)-v[0];
|
|
j1=0;
|
|
usubmin = std::numeric_limits<float>::max();
|
|
for (j=1; j<costMatrix.rows; j++)
|
|
{
|
|
h = costMatrix.at<float>(i,j)-v[j];
|
|
if (h < usubmin)
|
|
{
|
|
if (h >= umin)
|
|
{
|
|
usubmin = h;
|
|
j2 = j;
|
|
}
|
|
else
|
|
{
|
|
usubmin = umin;
|
|
umin = h;
|
|
j2 = j1;
|
|
j1 = j;
|
|
}
|
|
}
|
|
}
|
|
i0 = colsol[j1];
|
|
|
|
if (fabs(umin-usubmin) > LOWV) //if( umin < usubmin )
|
|
{
|
|
v[j1] = v[j1] - (usubmin - umin);
|
|
}
|
|
else // minimum and subminimum equal.
|
|
{
|
|
if (i0 >= 0) // minimum column j1 is assigned.
|
|
{
|
|
j1 = j2;
|
|
i0 = colsol[j2];
|
|
}
|
|
}
|
|
// (re-)assign i to j1, possibly de-assigning an i0.
|
|
rowsol[i]=j1;
|
|
colsol[j1]=i;
|
|
|
|
if (i0 >= 0)
|
|
{
|
|
//if( umin < usubmin )
|
|
if (fabs(umin-usubmin) > LOWV)
|
|
{
|
|
free[--k] = i0;
|
|
}
|
|
else
|
|
{
|
|
free[numfree++] = i0;
|
|
}
|
|
}
|
|
}
|
|
}while (loopcnt<2); // repeat once.
|
|
|
|
// AUGMENT SOLUTION for each free row //
|
|
for (f = 0; f<numfree; f++)
|
|
{
|
|
freerow = free[f]; // start row of augmenting path.
|
|
// Dijkstra shortest path algorithm.
|
|
// runs until unassigned column added to shortest path tree.
|
|
for (j = 0; j < costMatrix.rows; j++)
|
|
{
|
|
d[j] = costMatrix.at<float>(freerow,j) - v[j];
|
|
pred[j] = float(freerow);
|
|
collist[j] = j; // init column list.
|
|
}
|
|
|
|
low=0; // columns in 0..low-1 are ready, now none.
|
|
up=0; // columns in low..up-1 are to be scanned for current minimum, now none.
|
|
unassignedfound = false;
|
|
do
|
|
{
|
|
if (up == low)
|
|
{
|
|
last=low-1;
|
|
min = d[collist[up++]];
|
|
for (k = up; k < costMatrix.rows; k++)
|
|
{
|
|
j = collist[k];
|
|
h = d[j];
|
|
if (h <= min)
|
|
{
|
|
if (h < min) // new minimum.
|
|
{
|
|
up = low; // restart list at index low.
|
|
min = h;
|
|
}
|
|
collist[k] = collist[up];
|
|
collist[up++] = j;
|
|
}
|
|
}
|
|
for (k=low; k<up; k++)
|
|
{
|
|
if (colsol[collist[k]] < 0)
|
|
{
|
|
endofpath = collist[k];
|
|
unassignedfound = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!unassignedfound)
|
|
{
|
|
// update 'distances' between freerow and all unscanned columns, via next scanned column.
|
|
j1 = collist[low];
|
|
low++;
|
|
i = colsol[j1];
|
|
h = costMatrix.at<float>(i,j1)-v[j1]-min;
|
|
|
|
for (k = up; k < costMatrix.rows; k++)
|
|
{
|
|
j = collist[k];
|
|
v2 = costMatrix.at<float>(i,j) - v[j] - h;
|
|
if (v2 < d[j])
|
|
{
|
|
pred[j] = float(i);
|
|
if (v2 == min)
|
|
{
|
|
if (colsol[j] < 0)
|
|
{
|
|
// if unassigned, shortest augmenting path is complete.
|
|
endofpath = j;
|
|
unassignedfound = true;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
collist[k] = collist[up];
|
|
collist[up++] = j;
|
|
}
|
|
}
|
|
d[j] = v2;
|
|
}
|
|
}
|
|
}
|
|
}while (!unassignedfound);
|
|
|
|
// update column prices.
|
|
for (k = 0; k <= last; k++)
|
|
{
|
|
j1 = collist[k];
|
|
v[j1] = v[j1] + d[j1] - min;
|
|
}
|
|
|
|
// reset row and column assignments along the alternating path.
|
|
do
|
|
{
|
|
i = int(pred[endofpath]);
|
|
colsol[endofpath] = i;
|
|
j1 = endofpath;
|
|
endofpath = rowsol[i];
|
|
rowsol[i] = j1;
|
|
}while (i != freerow);
|
|
}
|
|
|
|
// calculate symmetric shape context cost
|
|
cv::Mat trueCostMatrix(costMatrix, cv::Rect(0,0,sizeScd1, sizeScd2));
|
|
float leftcost = 0;
|
|
for (int nrow=0; nrow<trueCostMatrix.rows; nrow++)
|
|
{
|
|
double minval;
|
|
minMaxIdx(trueCostMatrix.row(nrow), &minval);
|
|
leftcost+=float(minval);
|
|
}
|
|
leftcost /= trueCostMatrix.rows;
|
|
|
|
float rightcost = 0;
|
|
for (int ncol=0; ncol<trueCostMatrix.cols; ncol++)
|
|
{
|
|
double minval;
|
|
minMaxIdx(trueCostMatrix.col(ncol), &minval);
|
|
rightcost+=float(minval);
|
|
}
|
|
rightcost /= trueCostMatrix.cols;
|
|
|
|
minMatchCost = std::max(leftcost,rightcost);
|
|
|
|
// Save in a DMatch vector
|
|
for (i=0;i<costMatrix.cols;i++)
|
|
{
|
|
cv::DMatch singleMatch(colsol[i],i,costMatrix.at<float>(colsol[i],i));//queryIdx,trainIdx,distance
|
|
outMatches.push_back(singleMatch);
|
|
}
|
|
|
|
// Update inliers
|
|
inliers1.reserve(sizeScd1);
|
|
for (size_t kc = 0; kc<inliers1.size(); kc++)
|
|
{
|
|
if (rowsol[kc]<sizeScd1) // if a real match
|
|
inliers1[kc]=1;
|
|
else
|
|
inliers1[kc]=0;
|
|
}
|
|
inliers2.reserve(sizeScd2);
|
|
for (size_t kc = 0; kc<inliers2.size(); kc++)
|
|
{
|
|
if (colsol[kc]<sizeScd2) // if a real match
|
|
inliers2[kc]=1;
|
|
else
|
|
inliers2[kc]=0;
|
|
}
|
|
}
|
|
|
|
}
|