mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
1ba7c728a6
[evolution] Stitching for OpenCV 4.0 * stitching: wrap Stitcher::create for bindings * provide method for consistent stitcher usage across languages * samples: add python stitching sample * port cpp stitching sample to python * stitching: consolidate Stitcher create methods * remove Stitcher::createDefault, it returns Stitcher, not Ptr<Stitcher> -> inconsistent API * deprecate cv::createStitcher and cv::createStitcherScans in favor of Stitcher::create * stitching: avoid anonymous enum in Stitcher * ORIG_RESOL should be double * add documentatiton * stitching: improve documentation in Stitcher * stitching: expose estimator in Stitcher * remove ABI hack * stitching: drop try_use_gpu flag * OCL will be used automatically through T-API in OCL-enable paths * CUDA won't be used unless user sets CUDA-enabled classes manually * stitching: drop FeaturesFinder * use Feature2D instead of FeaturesFinder * interoperability with features2d module * detach from dependency on xfeatures2d * features2d: fix compute and detect to work with UMat vectors * correctly pass UMats as UMats to allow OCL paths * support vector of UMats as output arg * stitching: use nearest interpolation for resizing masks * fix warnings
225 lines
6.2 KiB
C++
225 lines
6.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
using std::vector;
|
|
|
|
Feature2D::~Feature2D() {}
|
|
|
|
/*
|
|
* Detect keypoints in an image.
|
|
* image The image.
|
|
* keypoints The detected keypoints.
|
|
* mask Mask specifying where to look for keypoints (optional). Must be a char
|
|
* matrix with non-zero values in the region of interest.
|
|
*/
|
|
void Feature2D::detect( InputArray image,
|
|
std::vector<KeyPoint>& keypoints,
|
|
InputArray mask )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
if( image.empty() )
|
|
{
|
|
keypoints.clear();
|
|
return;
|
|
}
|
|
detectAndCompute(image, mask, keypoints, noArray(), false);
|
|
}
|
|
|
|
|
|
void Feature2D::detect( InputArrayOfArrays images,
|
|
std::vector<std::vector<KeyPoint> >& keypoints,
|
|
InputArrayOfArrays masks )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
int nimages = (int)images.total();
|
|
|
|
if (!masks.empty())
|
|
{
|
|
CV_Assert(masks.total() == (size_t)nimages);
|
|
}
|
|
|
|
keypoints.resize(nimages);
|
|
|
|
if (images.isMatVector())
|
|
{
|
|
for (int i = 0; i < nimages; i++)
|
|
{
|
|
detect(images.getMat(i), keypoints[i], masks.empty() ? noArray() : masks.getMat(i));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// assume UMats
|
|
for (int i = 0; i < nimages; i++)
|
|
{
|
|
detect(images.getUMat(i), keypoints[i], masks.empty() ? noArray() : masks.getUMat(i));
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
/*
|
|
* Compute the descriptors for a set of keypoints in an image.
|
|
* image The image.
|
|
* keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
|
|
* descriptors Copmputed descriptors. Row i is the descriptor for keypoint i.
|
|
*/
|
|
void Feature2D::compute( InputArray image,
|
|
std::vector<KeyPoint>& keypoints,
|
|
OutputArray descriptors )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
if( image.empty() )
|
|
{
|
|
descriptors.release();
|
|
return;
|
|
}
|
|
detectAndCompute(image, noArray(), keypoints, descriptors, true);
|
|
}
|
|
|
|
void Feature2D::compute( InputArrayOfArrays images,
|
|
std::vector<std::vector<KeyPoint> >& keypoints,
|
|
OutputArrayOfArrays descriptors )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
if( !descriptors.needed() )
|
|
return;
|
|
|
|
int nimages = (int)images.total();
|
|
|
|
CV_Assert( keypoints.size() == (size_t)nimages );
|
|
// resize descriptors to appropriate size and compute
|
|
if (descriptors.isMatVector())
|
|
{
|
|
vector<Mat>& vec = *(vector<Mat>*)descriptors.getObj();
|
|
vec.resize(nimages);
|
|
for (int i = 0; i < nimages; i++)
|
|
{
|
|
compute(images.getMat(i), keypoints[i], vec[i]);
|
|
}
|
|
}
|
|
else if (descriptors.isUMatVector())
|
|
{
|
|
vector<UMat>& vec = *(vector<UMat>*)descriptors.getObj();
|
|
vec.resize(nimages);
|
|
for (int i = 0; i < nimages; i++)
|
|
{
|
|
compute(images.getUMat(i), keypoints[i], vec[i]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsBadArg, "descriptors must be vector<Mat> or vector<UMat>");
|
|
}
|
|
}
|
|
|
|
|
|
/* Detects keypoints and computes the descriptors */
|
|
void Feature2D::detectAndCompute( InputArray, InputArray,
|
|
std::vector<KeyPoint>&,
|
|
OutputArray,
|
|
bool )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
}
|
|
|
|
void Feature2D::write( const String& fileName ) const
|
|
{
|
|
FileStorage fs(fileName, FileStorage::WRITE);
|
|
write(fs);
|
|
}
|
|
|
|
void Feature2D::read( const String& fileName )
|
|
{
|
|
FileStorage fs(fileName, FileStorage::READ);
|
|
read(fs.root());
|
|
}
|
|
|
|
void Feature2D::write( FileStorage&) const
|
|
{
|
|
}
|
|
|
|
void Feature2D::read( const FileNode&)
|
|
{
|
|
}
|
|
|
|
int Feature2D::descriptorSize() const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int Feature2D::descriptorType() const
|
|
{
|
|
return CV_32F;
|
|
}
|
|
|
|
int Feature2D::defaultNorm() const
|
|
{
|
|
int tp = descriptorType();
|
|
return tp == CV_8U ? NORM_HAMMING : NORM_L2;
|
|
}
|
|
|
|
// Return true if detector object is empty
|
|
bool Feature2D::empty() const
|
|
{
|
|
return true;
|
|
}
|
|
|
|
String Feature2D::getDefaultName() const
|
|
{
|
|
return "Feature2D";
|
|
}
|
|
|
|
}
|