opencv/modules/core/src/drawing.cpp
2012-03-29 13:06:38 +00:00

2410 lines
77 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
enum { XY_SHIFT = 16, XY_ONE = 1 << XY_SHIFT, DRAWING_STORAGE_BLOCK = (1<<12) - 256 };
struct PolyEdge
{
PolyEdge() : y0(0), y1(0), x(0), dx(0), next(0) {}
//PolyEdge(int _y0, int _y1, int _x, int _dx) : y0(_y0), y1(_y1), x(_x), dx(_dx) {}
int y0, y1;
int x, dx;
PolyEdge *next;
};
static void
CollectPolyEdges( Mat& img, const Point* v, int npts,
vector<PolyEdge>& edges, const void* color, int line_type,
int shift, Point offset=Point() );
static void
FillEdgeCollection( Mat& img, vector<PolyEdge>& edges, const void* color );
static void
PolyLine( Mat& img, const Point* v, int npts, bool closed,
const void* color, int thickness, int line_type, int shift );
static void
FillConvexPoly( Mat& img, const Point* v, int npts,
const void* color, int line_type, int shift );
/****************************************************************************************\
* Lines *
\****************************************************************************************/
bool clipLine( Size img_size, Point& pt1, Point& pt2 )
{
int64 x1, y1, x2, y2;
int c1, c2;
int64 right = img_size.width-1, bottom = img_size.height-1;
if( img_size.width <= 0 || img_size.height <= 0 )
return false;
x1 = pt1.x; y1 = pt1.y; x2 = pt2.x; y2 = pt2.y;
c1 = (x1 < 0) + (x1 > right) * 2 + (y1 < 0) * 4 + (y1 > bottom) * 8;
c2 = (x2 < 0) + (x2 > right) * 2 + (y2 < 0) * 4 + (y2 > bottom) * 8;
if( (c1 & c2) == 0 && (c1 | c2) != 0 )
{
int64 a;
if( c1 & 12 )
{
a = c1 < 8 ? 0 : bottom;
x1 += (a - y1) * (x2 - x1) / (y2 - y1);
y1 = a;
c1 = (x1 < 0) + (x1 > right) * 2;
}
if( c2 & 12 )
{
a = c2 < 8 ? 0 : bottom;
x2 += (a - y2) * (x2 - x1) / (y2 - y1);
y2 = a;
c2 = (x2 < 0) + (x2 > right) * 2;
}
if( (c1 & c2) == 0 && (c1 | c2) != 0 )
{
if( c1 )
{
a = c1 == 1 ? 0 : right;
y1 += (a - x1) * (y2 - y1) / (x2 - x1);
x1 = a;
c1 = 0;
}
if( c2 )
{
a = c2 == 1 ? 0 : right;
y2 += (a - x2) * (y2 - y1) / (x2 - x1);
x2 = a;
c2 = 0;
}
}
assert( (c1 & c2) != 0 || (x1 | y1 | x2 | y2) >= 0 );
pt1.x = (int)x1;
pt1.y = (int)y1;
pt2.x = (int)x2;
pt2.y = (int)y2;
}
return (c1 | c2) == 0;
}
bool clipLine( Rect img_rect, Point& pt1, Point& pt2 )
{
Point tl = img_rect.tl();
pt1 -= tl; pt2 -= tl;
bool inside = clipLine(img_rect.size(), pt1, pt2);
pt1 += tl; pt2 += tl;
return inside;
}
/*
Initializes line iterator.
Returns number of points on the line or negative number if error.
*/
LineIterator::LineIterator(const Mat& img, Point pt1, Point pt2,
int connectivity, bool left_to_right)
{
count = -1;
CV_Assert( connectivity == 8 || connectivity == 4 );
if( (unsigned)pt1.x >= (unsigned)(img.cols) ||
(unsigned)pt2.x >= (unsigned)(img.cols) ||
(unsigned)pt1.y >= (unsigned)(img.rows) ||
(unsigned)pt2.y >= (unsigned)(img.rows) )
{
if( !clipLine( img.size(), pt1, pt2 ) )
{
ptr = img.data;
err = plusDelta = minusDelta = plusStep = minusStep = count = 0;
return;
}
}
int bt_pix0 = (int)img.elemSize(), bt_pix = bt_pix0;
size_t step = img.step;
int dx = pt2.x - pt1.x;
int dy = pt2.y - pt1.y;
int s = dx < 0 ? -1 : 0;
if( left_to_right )
{
dx = (dx ^ s) - s;
dy = (dy ^ s) - s;
pt1.x ^= (pt1.x ^ pt2.x) & s;
pt1.y ^= (pt1.y ^ pt2.y) & s;
}
else
{
dx = (dx ^ s) - s;
bt_pix = (bt_pix ^ s) - s;
}
ptr = (uchar*)(img.data + pt1.y * step + pt1.x * bt_pix0);
s = dy < 0 ? -1 : 0;
dy = (dy ^ s) - s;
step = (step ^ s) - s;
s = dy > dx ? -1 : 0;
/* conditional swaps */
dx ^= dy & s;
dy ^= dx & s;
dx ^= dy & s;
bt_pix ^= step & s;
step ^= bt_pix & s;
bt_pix ^= step & s;
if( connectivity == 8 )
{
assert( dx >= 0 && dy >= 0 );
err = dx - (dy + dy);
plusDelta = dx + dx;
minusDelta = -(dy + dy);
plusStep = (int)step;
minusStep = bt_pix;
count = dx + 1;
}
else /* connectivity == 4 */
{
assert( dx >= 0 && dy >= 0 );
err = 0;
plusDelta = (dx + dx) + (dy + dy);
minusDelta = -(dy + dy);
plusStep = (int)step - bt_pix;
minusStep = bt_pix;
count = dx + dy + 1;
}
this->ptr0 = img.data;
this->step = (int)img.step;
this->elemSize = bt_pix0;
}
static void
Line( Mat& img, Point pt1, Point pt2,
const void* _color, int connectivity = 8 )
{
if( connectivity == 0 )
connectivity = 8;
if( connectivity == 1 )
connectivity = 4;
LineIterator iterator(img, pt1, pt2, connectivity, true);
int i, count = iterator.count;
int pix_size = (int)img.elemSize();
const uchar* color = (const uchar*)_color;
for( i = 0; i < count; i++, ++iterator )
{
uchar* ptr = *iterator;
if( pix_size == 1 )
ptr[0] = color[0];
else if( pix_size == 3 )
{
ptr[0] = color[0];
ptr[1] = color[1];
ptr[2] = color[2];
}
else
memcpy( *iterator, color, pix_size );
}
}
/* Correction table depent on the slope */
static const uchar SlopeCorrTable[] = {
181, 181, 181, 182, 182, 183, 184, 185, 187, 188, 190, 192, 194, 196, 198, 201,
203, 206, 209, 211, 214, 218, 221, 224, 227, 231, 235, 238, 242, 246, 250, 254
};
/* Gaussian for antialiasing filter */
static const int FilterTable[] = {
168, 177, 185, 194, 202, 210, 218, 224, 231, 236, 241, 246, 249, 252, 254, 254,
254, 254, 252, 249, 246, 241, 236, 231, 224, 218, 210, 202, 194, 185, 177, 168,
158, 149, 140, 131, 122, 114, 105, 97, 89, 82, 75, 68, 62, 56, 50, 45,
40, 36, 32, 28, 25, 22, 19, 16, 14, 12, 11, 9, 8, 7, 5, 5
};
static void
LineAA( Mat& img, Point pt1, Point pt2, const void* color )
{
int dx, dy;
int ecount, scount = 0;
int slope;
int ax, ay;
int x_step, y_step;
int i, j;
int ep_table[9];
int cb = ((uchar*)color)[0], cg = ((uchar*)color)[1], cr = ((uchar*)color)[2];
int _cb, _cg, _cr;
int nch = img.channels();
uchar* ptr = img.data;
size_t step = img.step;
Size size = img.size();
if( !((nch == 1 || nch == 3) && img.depth() == CV_8U) )
{
Line(img, pt1, pt2, color);
return;
}
pt1.x -= XY_ONE*2;
pt1.y -= XY_ONE*2;
pt2.x -= XY_ONE*2;
pt2.y -= XY_ONE*2;
ptr += img.step*2 + 2*nch;
size.width = ((size.width - 5) << XY_SHIFT) + 1;
size.height = ((size.height - 5) << XY_SHIFT) + 1;
if( !clipLine( size, pt1, pt2 ))
return;
dx = pt2.x - pt1.x;
dy = pt2.y - pt1.y;
j = dx < 0 ? -1 : 0;
ax = (dx ^ j) - j;
i = dy < 0 ? -1 : 0;
ay = (dy ^ i) - i;
if( ax > ay )
{
dx = ax;
dy = (dy ^ j) - j;
pt1.x ^= pt2.x & j;
pt2.x ^= pt1.x & j;
pt1.x ^= pt2.x & j;
pt1.y ^= pt2.y & j;
pt2.y ^= pt1.y & j;
pt1.y ^= pt2.y & j;
x_step = XY_ONE;
y_step = (int) (((int64) dy << XY_SHIFT) / (ax | 1));
pt2.x += XY_ONE;
ecount = (pt2.x >> XY_SHIFT) - (pt1.x >> XY_SHIFT);
j = -(pt1.x & (XY_ONE - 1));
pt1.y += (int) ((((int64) y_step) * j) >> XY_SHIFT) + (XY_ONE >> 1);
slope = (y_step >> (XY_SHIFT - 5)) & 0x3f;
slope ^= (y_step < 0 ? 0x3f : 0);
/* Get 4-bit fractions for end-point adjustments */
i = (pt1.x >> (XY_SHIFT - 7)) & 0x78;
j = (pt2.x >> (XY_SHIFT - 7)) & 0x78;
}
else
{
dy = ay;
dx = (dx ^ i) - i;
pt1.x ^= pt2.x & i;
pt2.x ^= pt1.x & i;
pt1.x ^= pt2.x & i;
pt1.y ^= pt2.y & i;
pt2.y ^= pt1.y & i;
pt1.y ^= pt2.y & i;
x_step = (int) (((int64) dx << XY_SHIFT) / (ay | 1));
y_step = XY_ONE;
pt2.y += XY_ONE;
ecount = (pt2.y >> XY_SHIFT) - (pt1.y >> XY_SHIFT);
j = -(pt1.y & (XY_ONE - 1));
pt1.x += (int) ((((int64) x_step) * j) >> XY_SHIFT) + (XY_ONE >> 1);
slope = (x_step >> (XY_SHIFT - 5)) & 0x3f;
slope ^= (x_step < 0 ? 0x3f : 0);
/* Get 4-bit fractions for end-point adjustments */
i = (pt1.y >> (XY_SHIFT - 7)) & 0x78;
j = (pt2.y >> (XY_SHIFT - 7)) & 0x78;
}
slope = (slope & 0x20) ? 0x100 : SlopeCorrTable[slope];
/* Calc end point correction table */
{
int t0 = slope << 7;
int t1 = ((0x78 - i) | 4) * slope;
int t2 = (j | 4) * slope;
ep_table[0] = 0;
ep_table[8] = slope;
ep_table[1] = ep_table[3] = ((((j - i) & 0x78) | 4) * slope >> 8) & 0x1ff;
ep_table[2] = (t1 >> 8) & 0x1ff;
ep_table[4] = ((((j - i) + 0x80) | 4) * slope >> 8) & 0x1ff;
ep_table[5] = ((t1 + t0) >> 8) & 0x1ff;
ep_table[6] = (t2 >> 8) & 0x1ff;
ep_table[7] = ((t2 + t0) >> 8) & 0x1ff;
}
if( nch == 3 )
{
#define ICV_PUT_POINT() \
{ \
_cb = tptr[0]; \
_cb += ((cb - _cb)*a + 127)>> 8;\
_cg = tptr[1]; \
_cg += ((cg - _cg)*a + 127)>> 8;\
_cr = tptr[2]; \
_cr += ((cr - _cr)*a + 127)>> 8;\
tptr[0] = (uchar)_cb; \
tptr[1] = (uchar)_cg; \
tptr[2] = (uchar)_cr; \
}
if( ax > ay )
{
ptr += (pt1.x >> XY_SHIFT) * 3;
while( ecount >= 0 )
{
uchar *tptr = ptr + ((pt1.y >> XY_SHIFT) - 1) * step;
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.y >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
tptr += step;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
tptr += step;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.y += y_step;
ptr += 3;
scount++;
ecount--;
}
}
else
{
ptr += (pt1.y >> XY_SHIFT) * step;
while( ecount >= 0 )
{
uchar *tptr = ptr + ((pt1.x >> XY_SHIFT) - 1) * 3;
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.x >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
tptr += 3;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
tptr += 3;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.x += x_step;
ptr += step;
scount++;
ecount--;
}
}
#undef ICV_PUT_POINT
}
else
{
#define ICV_PUT_POINT() \
{ \
_cb = tptr[0]; \
_cb += ((cb - _cb)*a + 127)>> 8;\
tptr[0] = (uchar)_cb; \
}
if( ax > ay )
{
ptr += (pt1.x >> XY_SHIFT);
while( ecount >= 0 )
{
uchar *tptr = ptr + ((pt1.y >> XY_SHIFT) - 1) * step;
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.y >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
tptr += step;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
tptr += step;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.y += y_step;
ptr++;
scount++;
ecount--;
}
}
else
{
ptr += (pt1.y >> XY_SHIFT) * step;
while( ecount >= 0 )
{
uchar *tptr = ptr + ((pt1.x >> XY_SHIFT) - 1);
int ep_corr = ep_table[(((scount >= 2) + 1) & (scount | 2)) * 3 +
(((ecount >= 2) + 1) & (ecount | 2))];
int a, dist = (pt1.x >> (XY_SHIFT - 5)) & 31;
a = (ep_corr * FilterTable[dist + 32] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
tptr++;
a = (ep_corr * FilterTable[dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
tptr++;
a = (ep_corr * FilterTable[63 - dist] >> 8) & 0xff;
ICV_PUT_POINT();
ICV_PUT_POINT();
pt1.x += x_step;
ptr += step;
scount++;
ecount--;
}
}
#undef ICV_PUT_POINT
}
}
static void
Line2( Mat& img, Point pt1, Point pt2, const void* color )
{
int dx, dy;
int ecount;
int ax, ay;
int i, j, x, y;
int x_step, y_step;
int cb = ((uchar*)color)[0];
int cg = ((uchar*)color)[1];
int cr = ((uchar*)color)[2];
int pix_size = (int)img.elemSize();
uchar *ptr = img.data, *tptr;
size_t step = img.step;
Size size = img.size(), sizeScaled(size.width*XY_ONE, size.height*XY_ONE);
//assert( img && (nch == 1 || nch == 3) && img.depth() == CV_8U );
if( !clipLine( sizeScaled, pt1, pt2 ))
return;
dx = pt2.x - pt1.x;
dy = pt2.y - pt1.y;
j = dx < 0 ? -1 : 0;
ax = (dx ^ j) - j;
i = dy < 0 ? -1 : 0;
ay = (dy ^ i) - i;
if( ax > ay )
{
dx = ax;
dy = (dy ^ j) - j;
pt1.x ^= pt2.x & j;
pt2.x ^= pt1.x & j;
pt1.x ^= pt2.x & j;
pt1.y ^= pt2.y & j;
pt2.y ^= pt1.y & j;
pt1.y ^= pt2.y & j;
x_step = XY_ONE;
y_step = (int) (((int64) dy << XY_SHIFT) / (ax | 1));
ecount = (pt2.x - pt1.x) >> XY_SHIFT;
}
else
{
dy = ay;
dx = (dx ^ i) - i;
pt1.x ^= pt2.x & i;
pt2.x ^= pt1.x & i;
pt1.x ^= pt2.x & i;
pt1.y ^= pt2.y & i;
pt2.y ^= pt1.y & i;
pt1.y ^= pt2.y & i;
x_step = (int) (((int64) dx << XY_SHIFT) / (ay | 1));
y_step = XY_ONE;
ecount = (pt2.y - pt1.y) >> XY_SHIFT;
}
pt1.x += (XY_ONE >> 1);
pt1.y += (XY_ONE >> 1);
if( pix_size == 3 )
{
#define ICV_PUT_POINT(_x,_y) \
x = (_x); y = (_y); \
if( 0 <= x && x < size.width && \
0 <= y && y < size.height ) \
{ \
tptr = ptr + y*step + x*3; \
tptr[0] = (uchar)cb; \
tptr[1] = (uchar)cg; \
tptr[2] = (uchar)cr; \
}
ICV_PUT_POINT((pt2.x + (XY_ONE >> 1)) >> XY_SHIFT,
(pt2.y + (XY_ONE >> 1)) >> XY_SHIFT);
if( ax > ay )
{
pt1.x >>= XY_SHIFT;
while( ecount >= 0 )
{
ICV_PUT_POINT(pt1.x, pt1.y >> XY_SHIFT);
pt1.x++;
pt1.y += y_step;
ecount--;
}
}
else
{
pt1.y >>= XY_SHIFT;
while( ecount >= 0 )
{
ICV_PUT_POINT(pt1.x >> XY_SHIFT, pt1.y);
pt1.x += x_step;
pt1.y++;
ecount--;
}
}
#undef ICV_PUT_POINT
}
else if( pix_size == 1 )
{
#define ICV_PUT_POINT(_x,_y) \
x = (_x); y = (_y); \
if( 0 <= x && x < size.width && \
0 <= y && y < size.height ) \
{ \
tptr = ptr + y*step + x;\
tptr[0] = (uchar)cb; \
}
ICV_PUT_POINT((pt2.x + (XY_ONE >> 1)) >> XY_SHIFT,
(pt2.y + (XY_ONE >> 1)) >> XY_SHIFT);
if( ax > ay )
{
pt1.x >>= XY_SHIFT;
while( ecount >= 0 )
{
ICV_PUT_POINT(pt1.x, pt1.y >> XY_SHIFT);
pt1.x++;
pt1.y += y_step;
ecount--;
}
}
else
{
pt1.y >>= XY_SHIFT;
while( ecount >= 0 )
{
ICV_PUT_POINT(pt1.x >> XY_SHIFT, pt1.y);
pt1.x += x_step;
pt1.y++;
ecount--;
}
}
#undef ICV_PUT_POINT
}
else
{
#define ICV_PUT_POINT(_x,_y) \
x = (_x); y = (_y); \
if( 0 <= x && x < size.width && \
0 <= y && y < size.height ) \
{ \
tptr = ptr + y*step + x*pix_size;\
for( j = 0; j < pix_size; j++ ) \
tptr[j] = ((uchar*)color)[j]; \
}
ICV_PUT_POINT((pt2.x + (XY_ONE >> 1)) >> XY_SHIFT,
(pt2.y + (XY_ONE >> 1)) >> XY_SHIFT);
if( ax > ay )
{
pt1.x >>= XY_SHIFT;
while( ecount >= 0 )
{
ICV_PUT_POINT(pt1.x, pt1.y >> XY_SHIFT);
pt1.x++;
pt1.y += y_step;
ecount--;
}
}
else
{
pt1.y >>= XY_SHIFT;
while( ecount >= 0 )
{
ICV_PUT_POINT(pt1.x >> XY_SHIFT, pt1.y);
pt1.x += x_step;
pt1.y++;
ecount--;
}
}
#undef ICV_PUT_POINT
}
}
/****************************************************************************************\
* Antialiazed Elliptic Arcs via Antialiazed Lines *
\****************************************************************************************/
static const float SinTable[] =
{ 0.0000000f, 0.0174524f, 0.0348995f, 0.0523360f, 0.0697565f, 0.0871557f,
0.1045285f, 0.1218693f, 0.1391731f, 0.1564345f, 0.1736482f, 0.1908090f,
0.2079117f, 0.2249511f, 0.2419219f, 0.2588190f, 0.2756374f, 0.2923717f,
0.3090170f, 0.3255682f, 0.3420201f, 0.3583679f, 0.3746066f, 0.3907311f,
0.4067366f, 0.4226183f, 0.4383711f, 0.4539905f, 0.4694716f, 0.4848096f,
0.5000000f, 0.5150381f, 0.5299193f, 0.5446390f, 0.5591929f, 0.5735764f,
0.5877853f, 0.6018150f, 0.6156615f, 0.6293204f, 0.6427876f, 0.6560590f,
0.6691306f, 0.6819984f, 0.6946584f, 0.7071068f, 0.7193398f, 0.7313537f,
0.7431448f, 0.7547096f, 0.7660444f, 0.7771460f, 0.7880108f, 0.7986355f,
0.8090170f, 0.8191520f, 0.8290376f, 0.8386706f, 0.8480481f, 0.8571673f,
0.8660254f, 0.8746197f, 0.8829476f, 0.8910065f, 0.8987940f, 0.9063078f,
0.9135455f, 0.9205049f, 0.9271839f, 0.9335804f, 0.9396926f, 0.9455186f,
0.9510565f, 0.9563048f, 0.9612617f, 0.9659258f, 0.9702957f, 0.9743701f,
0.9781476f, 0.9816272f, 0.9848078f, 0.9876883f, 0.9902681f, 0.9925462f,
0.9945219f, 0.9961947f, 0.9975641f, 0.9986295f, 0.9993908f, 0.9998477f,
1.0000000f, 0.9998477f, 0.9993908f, 0.9986295f, 0.9975641f, 0.9961947f,
0.9945219f, 0.9925462f, 0.9902681f, 0.9876883f, 0.9848078f, 0.9816272f,
0.9781476f, 0.9743701f, 0.9702957f, 0.9659258f, 0.9612617f, 0.9563048f,
0.9510565f, 0.9455186f, 0.9396926f, 0.9335804f, 0.9271839f, 0.9205049f,
0.9135455f, 0.9063078f, 0.8987940f, 0.8910065f, 0.8829476f, 0.8746197f,
0.8660254f, 0.8571673f, 0.8480481f, 0.8386706f, 0.8290376f, 0.8191520f,
0.8090170f, 0.7986355f, 0.7880108f, 0.7771460f, 0.7660444f, 0.7547096f,
0.7431448f, 0.7313537f, 0.7193398f, 0.7071068f, 0.6946584f, 0.6819984f,
0.6691306f, 0.6560590f, 0.6427876f, 0.6293204f, 0.6156615f, 0.6018150f,
0.5877853f, 0.5735764f, 0.5591929f, 0.5446390f, 0.5299193f, 0.5150381f,
0.5000000f, 0.4848096f, 0.4694716f, 0.4539905f, 0.4383711f, 0.4226183f,
0.4067366f, 0.3907311f, 0.3746066f, 0.3583679f, 0.3420201f, 0.3255682f,
0.3090170f, 0.2923717f, 0.2756374f, 0.2588190f, 0.2419219f, 0.2249511f,
0.2079117f, 0.1908090f, 0.1736482f, 0.1564345f, 0.1391731f, 0.1218693f,
0.1045285f, 0.0871557f, 0.0697565f, 0.0523360f, 0.0348995f, 0.0174524f,
0.0000000f, -0.0174524f, -0.0348995f, -0.0523360f, -0.0697565f, -0.0871557f,
-0.1045285f, -0.1218693f, -0.1391731f, -0.1564345f, -0.1736482f, -0.1908090f,
-0.2079117f, -0.2249511f, -0.2419219f, -0.2588190f, -0.2756374f, -0.2923717f,
-0.3090170f, -0.3255682f, -0.3420201f, -0.3583679f, -0.3746066f, -0.3907311f,
-0.4067366f, -0.4226183f, -0.4383711f, -0.4539905f, -0.4694716f, -0.4848096f,
-0.5000000f, -0.5150381f, -0.5299193f, -0.5446390f, -0.5591929f, -0.5735764f,
-0.5877853f, -0.6018150f, -0.6156615f, -0.6293204f, -0.6427876f, -0.6560590f,
-0.6691306f, -0.6819984f, -0.6946584f, -0.7071068f, -0.7193398f, -0.7313537f,
-0.7431448f, -0.7547096f, -0.7660444f, -0.7771460f, -0.7880108f, -0.7986355f,
-0.8090170f, -0.8191520f, -0.8290376f, -0.8386706f, -0.8480481f, -0.8571673f,
-0.8660254f, -0.8746197f, -0.8829476f, -0.8910065f, -0.8987940f, -0.9063078f,
-0.9135455f, -0.9205049f, -0.9271839f, -0.9335804f, -0.9396926f, -0.9455186f,
-0.9510565f, -0.9563048f, -0.9612617f, -0.9659258f, -0.9702957f, -0.9743701f,
-0.9781476f, -0.9816272f, -0.9848078f, -0.9876883f, -0.9902681f, -0.9925462f,
-0.9945219f, -0.9961947f, -0.9975641f, -0.9986295f, -0.9993908f, -0.9998477f,
-1.0000000f, -0.9998477f, -0.9993908f, -0.9986295f, -0.9975641f, -0.9961947f,
-0.9945219f, -0.9925462f, -0.9902681f, -0.9876883f, -0.9848078f, -0.9816272f,
-0.9781476f, -0.9743701f, -0.9702957f, -0.9659258f, -0.9612617f, -0.9563048f,
-0.9510565f, -0.9455186f, -0.9396926f, -0.9335804f, -0.9271839f, -0.9205049f,
-0.9135455f, -0.9063078f, -0.8987940f, -0.8910065f, -0.8829476f, -0.8746197f,
-0.8660254f, -0.8571673f, -0.8480481f, -0.8386706f, -0.8290376f, -0.8191520f,
-0.8090170f, -0.7986355f, -0.7880108f, -0.7771460f, -0.7660444f, -0.7547096f,
-0.7431448f, -0.7313537f, -0.7193398f, -0.7071068f, -0.6946584f, -0.6819984f,
-0.6691306f, -0.6560590f, -0.6427876f, -0.6293204f, -0.6156615f, -0.6018150f,
-0.5877853f, -0.5735764f, -0.5591929f, -0.5446390f, -0.5299193f, -0.5150381f,
-0.5000000f, -0.4848096f, -0.4694716f, -0.4539905f, -0.4383711f, -0.4226183f,
-0.4067366f, -0.3907311f, -0.3746066f, -0.3583679f, -0.3420201f, -0.3255682f,
-0.3090170f, -0.2923717f, -0.2756374f, -0.2588190f, -0.2419219f, -0.2249511f,
-0.2079117f, -0.1908090f, -0.1736482f, -0.1564345f, -0.1391731f, -0.1218693f,
-0.1045285f, -0.0871557f, -0.0697565f, -0.0523360f, -0.0348995f, -0.0174524f,
-0.0000000f, 0.0174524f, 0.0348995f, 0.0523360f, 0.0697565f, 0.0871557f,
0.1045285f, 0.1218693f, 0.1391731f, 0.1564345f, 0.1736482f, 0.1908090f,
0.2079117f, 0.2249511f, 0.2419219f, 0.2588190f, 0.2756374f, 0.2923717f,
0.3090170f, 0.3255682f, 0.3420201f, 0.3583679f, 0.3746066f, 0.3907311f,
0.4067366f, 0.4226183f, 0.4383711f, 0.4539905f, 0.4694716f, 0.4848096f,
0.5000000f, 0.5150381f, 0.5299193f, 0.5446390f, 0.5591929f, 0.5735764f,
0.5877853f, 0.6018150f, 0.6156615f, 0.6293204f, 0.6427876f, 0.6560590f,
0.6691306f, 0.6819984f, 0.6946584f, 0.7071068f, 0.7193398f, 0.7313537f,
0.7431448f, 0.7547096f, 0.7660444f, 0.7771460f, 0.7880108f, 0.7986355f,
0.8090170f, 0.8191520f, 0.8290376f, 0.8386706f, 0.8480481f, 0.8571673f,
0.8660254f, 0.8746197f, 0.8829476f, 0.8910065f, 0.8987940f, 0.9063078f,
0.9135455f, 0.9205049f, 0.9271839f, 0.9335804f, 0.9396926f, 0.9455186f,
0.9510565f, 0.9563048f, 0.9612617f, 0.9659258f, 0.9702957f, 0.9743701f,
0.9781476f, 0.9816272f, 0.9848078f, 0.9876883f, 0.9902681f, 0.9925462f,
0.9945219f, 0.9961947f, 0.9975641f, 0.9986295f, 0.9993908f, 0.9998477f,
1.0000000f
};
static void
sincos( int angle, float& cosval, float& sinval )
{
angle += (angle < 0 ? 360 : 0);
sinval = SinTable[angle];
cosval = SinTable[450 - angle];
}
/*
constructs polygon that represents elliptic arc.
*/
void ellipse2Poly( Point center, Size axes, int angle,
int arc_start, int arc_end,
int delta, vector<Point>& pts )
{
float alpha, beta;
double size_a = axes.width, size_b = axes.height;
double cx = center.x, cy = center.y;
Point prevPt(INT_MIN,INT_MIN);
int i;
while( angle < 0 )
angle += 360;
while( angle > 360 )
angle -= 360;
if( arc_start > arc_end )
{
i = arc_start;
arc_start = arc_end;
arc_end = i;
}
while( arc_start < 0 )
{
arc_start += 360;
arc_end += 360;
}
while( arc_end > 360 )
{
arc_end -= 360;
arc_start -= 360;
}
if( arc_end - arc_start > 360 )
{
arc_start = 0;
arc_end = 360;
}
sincos( angle, alpha, beta );
pts.resize(0);
for( i = arc_start; i < arc_end + delta; i += delta )
{
double x, y;
angle = i;
if( angle > arc_end )
angle = arc_end;
if( angle < 0 )
angle += 360;
x = size_a * SinTable[450-angle];
y = size_b * SinTable[angle];
Point pt;
pt.x = cvRound( cx + x * alpha - y * beta );
pt.y = cvRound( cy + x * beta + y * alpha );
if( pt != prevPt )
pts.push_back(pt);
}
if( pts.size() < 2 )
pts.push_back(pts[0]);
}
static void
EllipseEx( Mat& img, Point center, Size axes,
int angle, int arc_start, int arc_end,
const void* color, int thickness, int line_type )
{
axes.width = std::abs(axes.width), axes.height = std::abs(axes.height);
int delta = (std::max(axes.width,axes.height)+(XY_ONE>>1))>>XY_SHIFT;
delta = delta < 3 ? 90 : delta < 10 ? 30 : delta < 15 ? 18 : 5;
vector<Point> v;
ellipse2Poly( center, axes, angle, arc_start, arc_end, delta, v );
if( thickness >= 0 )
PolyLine( img, &v[0], (int)v.size(), false, color, thickness, line_type, XY_SHIFT );
else if( arc_end - arc_start >= 360 )
FillConvexPoly( img, &v[0], (int)v.size(), color, line_type, XY_SHIFT );
else
{
v.push_back(center);
vector<PolyEdge> edges;
CollectPolyEdges( img, &v[0], (int)v.size(), edges, color, line_type, XY_SHIFT );
FillEdgeCollection( img, edges, color );
}
}
/****************************************************************************************\
* Polygons filling *
\****************************************************************************************/
/* helper macros: filling horizontal row */
#define ICV_HLINE( ptr, xl, xr, color, pix_size ) \
{ \
uchar* hline_ptr = (uchar*)(ptr) + (xl)*(pix_size); \
uchar* hline_max_ptr = (uchar*)(ptr) + (xr)*(pix_size); \
\
for( ; hline_ptr <= hline_max_ptr; hline_ptr += (pix_size))\
{ \
int hline_j; \
for( hline_j = 0; hline_j < (pix_size); hline_j++ ) \
{ \
hline_ptr[hline_j] = ((uchar*)color)[hline_j]; \
} \
} \
}
/* filling convex polygon. v - array of vertices, ntps - number of points */
static void
FillConvexPoly( Mat& img, const Point* v, int npts, const void* color, int line_type, int shift )
{
struct
{
int idx, di;
int x, dx, ye;
}
edge[2];
int delta = shift ? 1 << (shift - 1) : 0;
int i, y, imin = 0, left = 0, right = 1, x1, x2;
int edges = npts;
int xmin, xmax, ymin, ymax;
uchar* ptr = img.data;
Size size = img.size();
int pix_size = (int)img.elemSize();
Point p0;
int delta1, delta2;
if( line_type < CV_AA )
delta1 = delta2 = XY_ONE >> 1;
else
delta1 = XY_ONE - 1, delta2 = 0;
p0 = v[npts - 1];
p0.x <<= XY_SHIFT - shift;
p0.y <<= XY_SHIFT - shift;
assert( 0 <= shift && shift <= XY_SHIFT );
xmin = xmax = v[0].x;
ymin = ymax = v[0].y;
for( i = 0; i < npts; i++ )
{
Point p = v[i];
if( p.y < ymin )
{
ymin = p.y;
imin = i;
}
ymax = std::max( ymax, p.y );
xmax = std::max( xmax, p.x );
xmin = MIN( xmin, p.x );
p.x <<= XY_SHIFT - shift;
p.y <<= XY_SHIFT - shift;
if( line_type <= 8 )
{
if( shift == 0 )
{
Point pt0, pt1;
pt0.x = p0.x >> XY_SHIFT;
pt0.y = p0.y >> XY_SHIFT;
pt1.x = p.x >> XY_SHIFT;
pt1.y = p.y >> XY_SHIFT;
Line( img, pt0, pt1, color, line_type );
}
else
Line2( img, p0, p, color );
}
else
LineAA( img, p0, p, color );
p0 = p;
}
xmin = (xmin + delta) >> shift;
xmax = (xmax + delta) >> shift;
ymin = (ymin + delta) >> shift;
ymax = (ymax + delta) >> shift;
if( npts < 3 || xmax < 0 || ymax < 0 || xmin >= size.width || ymin >= size.height )
return;
ymax = MIN( ymax, size.height - 1 );
edge[0].idx = edge[1].idx = imin;
edge[0].ye = edge[1].ye = y = ymin;
edge[0].di = 1;
edge[1].di = npts - 1;
ptr += img.step*y;
do
{
if( line_type < CV_AA || y < ymax || y == ymin )
{
for( i = 0; i < 2; i++ )
{
if( y >= edge[i].ye )
{
int idx = edge[i].idx, di = edge[i].di;
int xs = 0, xe, ye, ty = 0;
for(;;)
{
ty = (v[idx].y + delta) >> shift;
if( ty > y || edges == 0 )
break;
xs = v[idx].x;
idx += di;
idx -= ((idx < npts) - 1) & npts; /* idx -= idx >= npts ? npts : 0 */
edges--;
}
ye = ty;
xs <<= XY_SHIFT - shift;
xe = v[idx].x << (XY_SHIFT - shift);
/* no more edges */
if( y >= ye )
return;
edge[i].ye = ye;
edge[i].dx = ((xe - xs)*2 + (ye - y)) / (2 * (ye - y));
edge[i].x = xs;
edge[i].idx = idx;
}
}
}
if( edge[left].x > edge[right].x )
{
left ^= 1;
right ^= 1;
}
x1 = edge[left].x;
x2 = edge[right].x;
if( y >= 0 )
{
int xx1 = (x1 + delta1) >> XY_SHIFT;
int xx2 = (x2 + delta2) >> XY_SHIFT;
if( xx2 >= 0 && xx1 < size.width )
{
if( xx1 < 0 )
xx1 = 0;
if( xx2 >= size.width )
xx2 = size.width - 1;
ICV_HLINE( ptr, xx1, xx2, color, pix_size );
}
}
x1 += edge[left].dx;
x2 += edge[right].dx;
edge[left].x = x1;
edge[right].x = x2;
ptr += img.step;
}
while( ++y <= ymax );
}
/******** Arbitrary polygon **********/
static void
CollectPolyEdges( Mat& img, const Point* v, int count, vector<PolyEdge>& edges,
const void* color, int line_type, int shift, Point offset )
{
int i, delta = offset.y + (shift ? 1 << (shift - 1) : 0);
Point pt0 = v[count-1], pt1;
pt0.x = (pt0.x + offset.x) << (XY_SHIFT - shift);
pt0.y = (pt0.y + delta) >> shift;
edges.reserve( edges.size() + count );
for( i = 0; i < count; i++, pt0 = pt1 )
{
Point t0, t1;
PolyEdge edge;
pt1 = v[i];
pt1.x = (pt1.x + offset.x) << (XY_SHIFT - shift);
pt1.y = (pt1.y + delta) >> shift;
if( line_type < CV_AA )
{
t0.y = pt0.y; t1.y = pt1.y;
t0.x = (pt0.x + (XY_ONE >> 1)) >> XY_SHIFT;
t1.x = (pt1.x + (XY_ONE >> 1)) >> XY_SHIFT;
Line( img, t0, t1, color, line_type );
}
else
{
t0.x = pt0.x; t1.x = pt1.x;
t0.y = pt0.y << XY_SHIFT;
t1.y = pt1.y << XY_SHIFT;
LineAA( img, t0, t1, color );
}
if( pt0.y == pt1.y )
continue;
if( pt0.y < pt1.y )
{
edge.y0 = pt0.y;
edge.y1 = pt1.y;
edge.x = pt0.x;
}
else
{
edge.y0 = pt1.y;
edge.y1 = pt0.y;
edge.x = pt1.x;
}
edge.dx = (pt1.x - pt0.x) / (pt1.y - pt0.y);
edges.push_back(edge);
}
}
struct CmpEdges
{
bool operator ()(const PolyEdge& e1, const PolyEdge& e2)
{
return e1.y0 - e2.y0 ? e1.y0 < e2.y0 :
e1.x - e2.x ? e1.x < e2.x : e1.dx < e2.dx;
}
};
/**************** helper macros and functions for sequence/contour processing ***********/
static void
FillEdgeCollection( Mat& img, vector<PolyEdge>& edges, const void* color )
{
PolyEdge tmp;
int i, y, total = (int)edges.size();
Size size = img.size();
PolyEdge* e;
int y_max = INT_MIN, x_max = INT_MIN, y_min = INT_MAX, x_min = INT_MAX;
int pix_size = (int)img.elemSize();
if( total < 2 )
return;
for( i = 0; i < total; i++ )
{
PolyEdge& e1 = edges[i];
assert( e1.y0 < e1.y1 );
y_min = std::min( y_min, e1.y0 );
y_max = std::max( y_max, e1.y1 );
x_min = std::min( x_min, e1.x );
x_max = std::max( x_max, e1.x );
}
if( y_max < 0 || y_min >= size.height || x_max < 0 || x_min >= (size.width<<XY_SHIFT) )
return;
std::sort( edges.begin(), edges.end(), CmpEdges() );
// start drawing
tmp.y0 = INT_MAX;
edges.push_back(tmp); // after this point we do not add
// any elements to edges, thus we can use pointers
i = 0;
tmp.next = 0;
e = &edges[i];
y_max = MIN( y_max, size.height );
for( y = e->y0; y < y_max; y++ )
{
PolyEdge *last, *prelast, *keep_prelast;
int sort_flag = 0;
int draw = 0;
int clipline = y < 0;
prelast = &tmp;
last = tmp.next;
while( last || e->y0 == y )
{
if( last && last->y1 == y )
{
// exclude edge if y reachs its lower point
prelast->next = last->next;
last = last->next;
continue;
}
keep_prelast = prelast;
if( last && (e->y0 > y || last->x < e->x) )
{
// go to the next edge in active list
prelast = last;
last = last->next;
}
else if( i < total )
{
// insert new edge into active list if y reachs its upper point
prelast->next = e;
e->next = last;
prelast = e;
e = &edges[++i];
}
else
break;
if( draw )
{
if( !clipline )
{
// convert x's from fixed-point to image coordinates
uchar *timg = img.data + y * img.step;
int x1 = keep_prelast->x;
int x2 = prelast->x;
if( x1 > x2 )
{
int t = x1;
x1 = x2;
x2 = t;
}
x1 = (x1 + XY_ONE - 1) >> XY_SHIFT;
x2 = x2 >> XY_SHIFT;
// clip and draw the line
if( x1 < size.width && x2 >= 0 )
{
if( x1 < 0 )
x1 = 0;
if( x2 >= size.width )
x2 = size.width - 1;
ICV_HLINE( timg, x1, x2, color, pix_size );
}
}
keep_prelast->x += keep_prelast->dx;
prelast->x += prelast->dx;
}
draw ^= 1;
}
// sort edges (using bubble sort)
keep_prelast = 0;
do
{
prelast = &tmp;
last = tmp.next;
while( last != keep_prelast && last->next != 0 )
{
PolyEdge *te = last->next;
// swap edges
if( last->x > te->x )
{
prelast->next = te;
last->next = te->next;
te->next = last;
prelast = te;
sort_flag = 1;
}
else
{
prelast = last;
last = te;
}
}
keep_prelast = prelast;
}
while( sort_flag && keep_prelast != tmp.next && keep_prelast != &tmp );
}
}
/* draws simple or filled circle */
static void
Circle( Mat& img, Point center, int radius, const void* color, int fill )
{
Size size = img.size();
size_t step = img.step;
int pix_size = (int)img.elemSize();
uchar* ptr = img.data;
int err = 0, dx = radius, dy = 0, plus = 1, minus = (radius << 1) - 1;
int inside = center.x >= radius && center.x < size.width - radius &&
center.y >= radius && center.y < size.height - radius;
#define ICV_PUT_POINT( ptr, x ) \
memcpy( ptr + (x)*pix_size, color, pix_size );
while( dx >= dy )
{
int mask;
int y11 = center.y - dy, y12 = center.y + dy, y21 = center.y - dx, y22 = center.y + dx;
int x11 = center.x - dx, x12 = center.x + dx, x21 = center.x - dy, x22 = center.x + dy;
if( inside )
{
uchar *tptr0 = ptr + y11 * step;
uchar *tptr1 = ptr + y12 * step;
if( !fill )
{
ICV_PUT_POINT( tptr0, x11 );
ICV_PUT_POINT( tptr1, x11 );
ICV_PUT_POINT( tptr0, x12 );
ICV_PUT_POINT( tptr1, x12 );
}
else
{
ICV_HLINE( tptr0, x11, x12, color, pix_size );
ICV_HLINE( tptr1, x11, x12, color, pix_size );
}
tptr0 = ptr + y21 * step;
tptr1 = ptr + y22 * step;
if( !fill )
{
ICV_PUT_POINT( tptr0, x21 );
ICV_PUT_POINT( tptr1, x21 );
ICV_PUT_POINT( tptr0, x22 );
ICV_PUT_POINT( tptr1, x22 );
}
else
{
ICV_HLINE( tptr0, x21, x22, color, pix_size );
ICV_HLINE( tptr1, x21, x22, color, pix_size );
}
}
else if( x11 < size.width && x12 >= 0 && y21 < size.height && y22 >= 0 )
{
if( fill )
{
x11 = std::max( x11, 0 );
x12 = MIN( x12, size.width - 1 );
}
if( (unsigned)y11 < (unsigned)size.height )
{
uchar *tptr = ptr + y11 * step;
if( !fill )
{
if( x11 >= 0 )
ICV_PUT_POINT( tptr, x11 );
if( x12 < size.width )
ICV_PUT_POINT( tptr, x12 );
}
else
ICV_HLINE( tptr, x11, x12, color, pix_size );
}
if( (unsigned)y12 < (unsigned)size.height )
{
uchar *tptr = ptr + y12 * step;
if( !fill )
{
if( x11 >= 0 )
ICV_PUT_POINT( tptr, x11 );
if( x12 < size.width )
ICV_PUT_POINT( tptr, x12 );
}
else
ICV_HLINE( tptr, x11, x12, color, pix_size );
}
if( x21 < size.width && x22 >= 0 )
{
if( fill )
{
x21 = std::max( x21, 0 );
x22 = MIN( x22, size.width - 1 );
}
if( (unsigned)y21 < (unsigned)size.height )
{
uchar *tptr = ptr + y21 * step;
if( !fill )
{
if( x21 >= 0 )
ICV_PUT_POINT( tptr, x21 );
if( x22 < size.width )
ICV_PUT_POINT( tptr, x22 );
}
else
ICV_HLINE( tptr, x21, x22, color, pix_size );
}
if( (unsigned)y22 < (unsigned)size.height )
{
uchar *tptr = ptr + y22 * step;
if( !fill )
{
if( x21 >= 0 )
ICV_PUT_POINT( tptr, x21 );
if( x22 < size.width )
ICV_PUT_POINT( tptr, x22 );
}
else
ICV_HLINE( tptr, x21, x22, color, pix_size );
}
}
}
dy++;
err += plus;
plus += 2;
mask = (err <= 0) - 1;
err -= minus & mask;
dx += mask;
minus -= mask & 2;
}
#undef ICV_PUT_POINT
}
static void
ThickLine( Mat& img, Point p0, Point p1, const void* color,
int thickness, int line_type, int flags, int shift )
{
static const double INV_XY_ONE = 1./XY_ONE;
p0.x <<= XY_SHIFT - shift;
p0.y <<= XY_SHIFT - shift;
p1.x <<= XY_SHIFT - shift;
p1.y <<= XY_SHIFT - shift;
if( thickness <= 1 )
{
if( line_type < CV_AA )
{
if( line_type == 1 || line_type == 4 || shift == 0 )
{
p0.x = (p0.x + (XY_ONE>>1)) >> XY_SHIFT;
p0.y = (p0.y + (XY_ONE>>1)) >> XY_SHIFT;
p1.x = (p1.x + (XY_ONE>>1)) >> XY_SHIFT;
p1.y = (p1.y + (XY_ONE>>1)) >> XY_SHIFT;
Line( img, p0, p1, color, line_type );
}
else
Line2( img, p0, p1, color );
}
else
LineAA( img, p0, p1, color );
}
else
{
Point pt[4], dp = Point(0,0);
double dx = (p0.x - p1.x)*INV_XY_ONE, dy = (p1.y - p0.y)*INV_XY_ONE;
double r = dx * dx + dy * dy;
int i, oddThickness = thickness & 1;
thickness <<= XY_SHIFT - 1;
if( fabs(r) > DBL_EPSILON )
{
r = (thickness + oddThickness*XY_ONE*0.5)/std::sqrt(r);
dp.x = cvRound( dy * r );
dp.y = cvRound( dx * r );
pt[0].x = p0.x + dp.x;
pt[0].y = p0.y + dp.y;
pt[1].x = p0.x - dp.x;
pt[1].y = p0.y - dp.y;
pt[2].x = p1.x - dp.x;
pt[2].y = p1.y - dp.y;
pt[3].x = p1.x + dp.x;
pt[3].y = p1.y + dp.y;
FillConvexPoly( img, pt, 4, color, line_type, XY_SHIFT );
}
for( i = 0; i < 2; i++ )
{
if( flags & (i+1) )
{
if( line_type < CV_AA )
{
Point center;
center.x = (p0.x + (XY_ONE>>1)) >> XY_SHIFT;
center.y = (p0.y + (XY_ONE>>1)) >> XY_SHIFT;
Circle( img, center, (thickness + (XY_ONE>>1)) >> XY_SHIFT, color, 1 );
}
else
{
EllipseEx( img, p0, cvSize(thickness, thickness),
0, 0, 360, color, -1, line_type );
}
}
p0 = p1;
}
}
}
static void
PolyLine( Mat& img, const Point* v, int count, bool is_closed,
const void* color, int thickness,
int line_type, int shift )
{
if( !v || count <= 0 )
return;
int i = is_closed ? count - 1 : 0;
int flags = 2 + !is_closed;
Point p0;
CV_Assert( 0 <= shift && shift <= XY_SHIFT && thickness >= 0 );
p0 = v[i];
for( i = !is_closed; i < count; i++ )
{
Point p = v[i];
ThickLine( img, p0, p, color, thickness, line_type, flags, shift );
p0 = p;
flags = 2;
}
}
/****************************************************************************************\
* External functions *
\****************************************************************************************/
void line( Mat& img, Point pt1, Point pt2, const Scalar& color,
int thickness, int line_type, int shift )
{
if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8;
CV_Assert( 0 <= thickness && thickness <= 255 );
CV_Assert( 0 <= shift && shift <= XY_SHIFT );
double buf[4];
scalarToRawData( color, buf, img.type(), 0 );
ThickLine( img, pt1, pt2, buf, thickness, line_type, 3, shift );
}
void rectangle( Mat& img, Point pt1, Point pt2,
const Scalar& color, int thickness,
int lineType, int shift )
{
if( lineType == CV_AA && img.depth() != CV_8U )
lineType = 8;
CV_Assert( thickness <= 255 );
CV_Assert( 0 <= shift && shift <= XY_SHIFT );
double buf[4];
scalarToRawData(color, buf, img.type(), 0);
Point pt[4];
pt[0] = pt1;
pt[1].x = pt2.x;
pt[1].y = pt1.y;
pt[2] = pt2;
pt[3].x = pt1.x;
pt[3].y = pt2.y;
if( thickness >= 0 )
PolyLine( img, pt, 4, true, buf, thickness, lineType, shift );
else
FillConvexPoly( img, pt, 4, buf, lineType, shift );
}
void rectangle( Mat& img, Rect rec,
const Scalar& color, int thickness,
int lineType, int shift )
{
CV_Assert( 0 <= shift && shift <= XY_SHIFT );
if( rec.area() > 0 )
rectangle( img, rec.tl(), rec.br() - Point(1<<shift,1<<shift),
color, thickness, lineType, shift );
}
void circle( Mat& img, Point center, int radius,
const Scalar& color, int thickness, int line_type, int shift )
{
if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8;
CV_Assert( radius >= 0 && thickness <= 255 &&
0 <= shift && shift <= XY_SHIFT );
double buf[4];
scalarToRawData(color, buf, img.type(), 0);
if( thickness > 1 || line_type >= CV_AA )
{
center.x <<= XY_SHIFT - shift;
center.y <<= XY_SHIFT - shift;
radius <<= XY_SHIFT - shift;
EllipseEx( img, center, Size(radius, radius),
0, 0, 360, buf, thickness, line_type );
}
else
Circle( img, center, radius, buf, thickness < 0 );
}
void ellipse( Mat& img, Point center, Size axes,
double angle, double start_angle, double end_angle,
const Scalar& color, int thickness, int line_type, int shift )
{
if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8;
CV_Assert( axes.width >= 0 && axes.height >= 0 &&
thickness <= 255 && 0 <= shift && shift <= XY_SHIFT );
double buf[4];
scalarToRawData(color, buf, img.type(), 0);
int _angle = cvRound(angle);
int _start_angle = cvRound(start_angle);
int _end_angle = cvRound(end_angle);
center.x <<= XY_SHIFT - shift;
center.y <<= XY_SHIFT - shift;
axes.width <<= XY_SHIFT - shift;
axes.height <<= XY_SHIFT - shift;
EllipseEx( img, center, axes, _angle, _start_angle,
_end_angle, buf, thickness, line_type );
}
void ellipse(Mat& img, const RotatedRect& box, const Scalar& color,
int thickness, int lineType)
{
if( lineType == CV_AA && img.depth() != CV_8U )
lineType = 8;
CV_Assert( box.size.width >= 0 && box.size.height >= 0 &&
thickness <= 255 );
double buf[4];
scalarToRawData(color, buf, img.type(), 0);
int _angle = cvRound(box.angle);
Point center(cvRound(box.center.x*(1 << XY_SHIFT)),
cvRound(box.center.y*(1 << XY_SHIFT)));
Size axes(cvRound(box.size.width*(1 << (XY_SHIFT - 1))),
cvRound(box.size.height*(1 << (XY_SHIFT - 1))));
EllipseEx( img, center, axes, _angle, 0, 360, buf, thickness, lineType );
}
void fillConvexPoly( Mat& img, const Point* pts, int npts,
const Scalar& color, int line_type, int shift )
{
if( !pts || npts <= 0 )
return;
if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8;
double buf[4];
CV_Assert( 0 <= shift && shift <= XY_SHIFT );
scalarToRawData(color, buf, img.type(), 0);
FillConvexPoly( img, pts, npts, buf, line_type, shift );
}
void fillPoly( Mat& img, const Point** pts, const int* npts, int ncontours,
const Scalar& color, int line_type,
int shift, Point offset )
{
if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8;
CV_Assert( pts && npts && ncontours >= 0 && 0 <= shift && shift <= XY_SHIFT );
double buf[4];
scalarToRawData(color, buf, img.type(), 0);
vector<PolyEdge> edges;
int i, total = 0;
for( i = 0; i < ncontours; i++ )
total += npts[i];
edges.reserve( total + 1 );
for( i = 0; i < ncontours; i++ )
CollectPolyEdges( img, pts[i], npts[i], edges, buf, line_type, shift, offset );
FillEdgeCollection(img, edges, buf);
}
void polylines( Mat& img, const Point** pts, const int* npts, int ncontours, bool isClosed,
const Scalar& color, int thickness, int line_type, int shift )
{
if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8;
CV_Assert( pts && npts && ncontours >= 0 &&
0 <= thickness && thickness <= 255 &&
0 <= shift && shift <= XY_SHIFT );
double buf[4];
scalarToRawData( color, buf, img.type(), 0 );
for( int i = 0; i < ncontours; i++ )
PolyLine( img, pts[i], npts[i], isClosed, buf, thickness, line_type, shift );
}
enum { FONT_SIZE_SHIFT=8, FONT_ITALIC_ALPHA=(1 << 8),
FONT_ITALIC_DIGIT=(2 << 8), FONT_ITALIC_PUNCT=(4 << 8),
FONT_ITALIC_BRACES=(8 << 8), FONT_HAVE_GREEK=(16 << 8),
FONT_HAVE_CYRILLIC=(32 << 8) };
static const int HersheyPlain[] = {
(5 + 4*16) + FONT_HAVE_GREEK,
199, 214, 217, 233, 219, 197, 234, 216, 221, 222, 228, 225, 211, 224, 210, 220,
200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 212, 213, 191, 226, 192,
215, 190, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 193, 84,
194, 85, 86, 87, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
195, 223, 196, 88 };
static const int HersheyPlainItalic[] = {
(5 + 4*16) + FONT_ITALIC_ALPHA + FONT_HAVE_GREEK,
199, 214, 217, 233, 219, 197, 234, 216, 221, 222, 228, 225, 211, 224, 210, 220,
200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 212, 213, 191, 226, 192,
215, 190, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 193, 84,
194, 85, 86, 87, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
195, 223, 196, 88 };
static const int HersheyComplexSmall[] = {
(6 + 7*16) + FONT_HAVE_GREEK,
1199, 1214, 1217, 1275, 1274, 1271, 1272, 1216, 1221, 1222, 1219, 1232, 1211, 1231, 1210, 1220,
1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1212, 2213, 1241, 1238, 1242,
1215, 1273, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013,
1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1223, 1084,
1224, 1247, 586, 1249, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111,
1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126,
1225, 1229, 1226, 1246 };
static const int HersheyComplexSmallItalic[] = {
(6 + 7*16) + FONT_ITALIC_ALPHA + FONT_HAVE_GREEK,
1199, 1214, 1217, 1275, 1274, 1271, 1272, 1216, 1221, 1222, 1219, 1232, 1211, 1231, 1210, 1220,
1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1212, 1213, 1241, 1238, 1242,
1215, 1273, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063,
1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1223, 1084,
1224, 1247, 586, 1249, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161,
1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176,
1225, 1229, 1226, 1246 };
static const int HersheySimplex[] = {
(9 + 12*16) + FONT_HAVE_GREEK,
2199, 714, 717, 733, 719, 697, 734, 716, 721, 722, 728, 725, 711, 724, 710, 720,
700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 712, 713, 691, 726, 692,
715, 690, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513,
514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 693, 584,
694, 2247, 586, 2249, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626,
695, 723, 696, 2246 };
static const int HersheyDuplex[] = {
(9 + 12*16) + FONT_HAVE_GREEK,
2199, 2714, 2728, 2732, 2719, 2733, 2718, 2727, 2721, 2722, 2723, 2725, 2711, 2724, 2710, 2720,
2700, 2701, 2702, 2703, 2704, 2705, 2706, 2707, 2708, 2709, 2712, 2713, 2730, 2726, 2731,
2715, 2734, 2501, 2502, 2503, 2504, 2505, 2506, 2507, 2508, 2509, 2510, 2511, 2512, 2513,
2514, 2515, 2516, 2517, 2518, 2519, 2520, 2521, 2522, 2523, 2524, 2525, 2526, 2223, 2084,
2224, 2247, 587, 2249, 2601, 2602, 2603, 2604, 2605, 2606, 2607, 2608, 2609, 2610, 2611,
2612, 2613, 2614, 2615, 2616, 2617, 2618, 2619, 2620, 2621, 2622, 2623, 2624, 2625, 2626,
2225, 2229, 2226, 2246 };
static const int HersheyComplex[] = {
(9 + 12*16) + FONT_HAVE_GREEK + FONT_HAVE_CYRILLIC,
2199, 2214, 2217, 2275, 2274, 2271, 2272, 2216, 2221, 2222, 2219, 2232, 2211, 2231, 2210, 2220,
2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2212, 2213, 2241, 2238, 2242,
2215, 2273, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2223, 2084,
2224, 2247, 587, 2249, 2101, 2102, 2103, 2104, 2105, 2106, 2107, 2108, 2109, 2110, 2111,
2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2120, 2121, 2122, 2123, 2124, 2125, 2126,
2225, 2229, 2226, 2246 };
static const int HersheyComplexItalic[] = {
(9 + 12*16) + FONT_ITALIC_ALPHA + FONT_ITALIC_DIGIT + FONT_ITALIC_PUNCT +
FONT_HAVE_GREEK + FONT_HAVE_CYRILLIC,
2199, 2764, 2778, 2782, 2769, 2783, 2768, 2777, 2771, 2772, 2219, 2232, 2211, 2231, 2210, 2220,
2750, 2751, 2752, 2753, 2754, 2755, 2756, 2757, 2758, 2759, 2212, 2213, 2241, 2238, 2242,
2765, 2273, 2051, 2052, 2053, 2054, 2055, 2056, 2057, 2058, 2059, 2060, 2061, 2062, 2063,
2064, 2065, 2066, 2067, 2068, 2069, 2070, 2071, 2072, 2073, 2074, 2075, 2076, 2223, 2084,
2224, 2247, 587, 2249, 2151, 2152, 2153, 2154, 2155, 2156, 2157, 2158, 2159, 2160, 2161,
2162, 2163, 2164, 2165, 2166, 2167, 2168, 2169, 2170, 2171, 2172, 2173, 2174, 2175, 2176,
2225, 2229, 2226, 2246 };
static const int HersheyTriplex[] = {
(9 + 12*16) + FONT_HAVE_GREEK,
2199, 3214, 3228, 3232, 3219, 3233, 3218, 3227, 3221, 3222, 3223, 3225, 3211, 3224, 3210, 3220,
3200, 3201, 3202, 3203, 3204, 3205, 3206, 3207, 3208, 3209, 3212, 3213, 3230, 3226, 3231,
3215, 3234, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 3011, 3012, 3013,
2014, 3015, 3016, 3017, 3018, 3019, 3020, 3021, 3022, 3023, 3024, 3025, 3026, 2223, 2084,
2224, 2247, 587, 2249, 3101, 3102, 3103, 3104, 3105, 3106, 3107, 3108, 3109, 3110, 3111,
3112, 3113, 3114, 3115, 3116, 3117, 3118, 3119, 3120, 3121, 3122, 3123, 3124, 3125, 3126,
2225, 2229, 2226, 2246 };
static const int HersheyTriplexItalic[] = {
(9 + 12*16) + FONT_ITALIC_ALPHA + FONT_ITALIC_DIGIT +
FONT_ITALIC_PUNCT + FONT_HAVE_GREEK,
2199, 3264, 3278, 3282, 3269, 3233, 3268, 3277, 3271, 3272, 3223, 3225, 3261, 3224, 3260, 3270,
3250, 3251, 3252, 3253, 3254, 3255, 3256, 3257, 3258, 3259, 3262, 3263, 3230, 3226, 3231,
3265, 3234, 3051, 3052, 3053, 3054, 3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063,
2064, 3065, 3066, 3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074, 3075, 3076, 2223, 2084,
2224, 2247, 587, 2249, 3151, 3152, 3153, 3154, 3155, 3156, 3157, 3158, 3159, 3160, 3161,
3162, 3163, 3164, 3165, 3166, 3167, 3168, 3169, 3170, 3171, 3172, 3173, 3174, 3175, 3176,
2225, 2229, 2226, 2246 };
static const int HersheyScriptSimplex[] = {
(9 + 12*16) + FONT_ITALIC_ALPHA + FONT_HAVE_GREEK,
2199, 714, 717, 733, 719, 697, 734, 716, 721, 722, 728, 725, 711, 724, 710, 720,
700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 712, 713, 691, 726, 692,
715, 690, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563,
564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 693, 584,
694, 2247, 586, 2249, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661,
662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676,
695, 723, 696, 2246 };
static const int HersheyScriptComplex[] = {
(9 + 12*16) + FONT_ITALIC_ALPHA + FONT_ITALIC_DIGIT + FONT_ITALIC_PUNCT + FONT_HAVE_GREEK,
2199, 2764, 2778, 2782, 2769, 2783, 2768, 2777, 2771, 2772, 2219, 2232, 2211, 2231, 2210, 2220,
2750, 2751, 2752, 2753, 2754, 2755, 2756, 2757, 2758, 2759, 2212, 2213, 2241, 2238, 2242,
2215, 2273, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559, 2560, 2561, 2562, 2563,
2564, 2565, 2566, 2567, 2568, 2569, 2570, 2571, 2572, 2573, 2574, 2575, 2576, 2223, 2084,
2224, 2247, 586, 2249, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661,
2662, 2663, 2664, 2665, 2666, 2667, 2668, 2669, 2670, 2671, 2672, 2673, 2674, 2675, 2676,
2225, 2229, 2226, 2246 };
static const int* getFontData(int fontFace)
{
bool isItalic = (fontFace & FONT_ITALIC) != 0;
const int* ascii = 0;
switch( fontFace & 15 )
{
case FONT_HERSHEY_SIMPLEX:
ascii = HersheySimplex;
break;
case FONT_HERSHEY_PLAIN:
ascii = !isItalic ? HersheyPlain : HersheyPlainItalic;
break;
case FONT_HERSHEY_DUPLEX:
ascii = HersheyDuplex;
break;
case FONT_HERSHEY_COMPLEX:
ascii = !isItalic ? HersheyComplex : HersheyComplexItalic;
break;
case FONT_HERSHEY_TRIPLEX:
ascii = !isItalic ? HersheyTriplex : HersheyTriplexItalic;
break;
case FONT_HERSHEY_COMPLEX_SMALL:
ascii = !isItalic ? HersheyComplexSmall : HersheyComplexSmallItalic;
break;
case FONT_HERSHEY_SCRIPT_SIMPLEX:
ascii = HersheyScriptSimplex;
break;
case FONT_HERSHEY_SCRIPT_COMPLEX:
ascii = HersheyScriptComplex;
break;
default:
CV_Error( CV_StsOutOfRange, "Unknown font type" );
}
return ascii;
}
void putText( Mat& img, const string& text, Point org,
int fontFace, double fontScale, Scalar color,
int thickness, int line_type, bool bottomLeftOrigin )
{
const int* ascii = getFontData(fontFace);
double buf[4];
scalarToRawData(color, buf, img.type(), 0);
int base_line = -(ascii[0] & 15);
int hscale = cvRound(fontScale*XY_ONE), vscale = hscale;
if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8;
if( bottomLeftOrigin )
vscale = -vscale;
int view_x = org.x << XY_SHIFT;
int view_y = (org.y << XY_SHIFT) + base_line*vscale;
vector<Point> pts;
pts.reserve(1 << 10);
const char **faces = cv::g_HersheyGlyphs;
for( int i = 0; text[i] != '\0'; i++ )
{
int c = (uchar)text[i];
Point p;
if( c >= 127 || c < ' ' )
c = '?';
const char* ptr = faces[ascii[(c-' ')+1]];
p.x = (uchar)ptr[0] - 'R';
p.y = (uchar)ptr[1] - 'R';
int dx = p.y*hscale;
view_x -= p.x*hscale;
pts.resize(0);
for( ptr += 2;; )
{
if( *ptr == ' ' || !*ptr )
{
if( pts.size() > 1 )
PolyLine( img, &pts[0], (int)pts.size(), false, buf, thickness, line_type, XY_SHIFT );
if( !*ptr++ )
break;
pts.resize(0);
}
else
{
p.x = (uchar)ptr[0] - 'R';
p.y = (uchar)ptr[1] - 'R';
ptr += 2;
pts.push_back(Point(p.x*hscale + view_x, p.y*vscale + view_y));
}
}
view_x += dx;
}
}
Size getTextSize( const string& text, int fontFace, double fontScale, int thickness, int* _base_line)
{
Size size;
double view_x = 0;
const char **faces = cv::g_HersheyGlyphs;
const int* ascii = getFontData(fontFace);
int base_line = (ascii[0] & 15);
int cap_line = (ascii[0] >> 4) & 15;
size.height = cvRound((cap_line + base_line)*fontScale + (thickness+1)/2);
for( int i = 0; text[i] != '\0'; i++ )
{
int c = (uchar)text[i];
Point p;
if( c >= 127 || c < ' ' )
c = '?';
const char* ptr = faces[ascii[(c-' ')+1]];
p.x = (uchar)ptr[0] - 'R';
p.y = (uchar)ptr[1] - 'R';
view_x += (p.y - p.x)*fontScale;
}
size.width = cvRound(view_x + thickness);
if( _base_line )
*_base_line = cvRound(base_line*fontScale + thickness*0.5);
return size;
}
}
void cv::fillConvexPoly(InputOutputArray _img, InputArray _points,
const Scalar& color, int lineType, int shift)
{
Mat img = _img.getMat(), points = _points.getMat();
CV_Assert(points.checkVector(2, CV_32S) >= 0);
fillConvexPoly(img, (const Point*)points.data, points.rows*points.cols*points.channels()/2, color, lineType, shift);
}
void cv::fillPoly(InputOutputArray _img, InputArrayOfArrays pts,
const Scalar& color, int lineType, int shift, Point offset)
{
Mat img = _img.getMat();
int i, ncontours = (int)pts.total();
if( ncontours == 0 )
return;
AutoBuffer<Point*> _ptsptr(ncontours);
AutoBuffer<int> _npts(ncontours);
Point** ptsptr = _ptsptr;
int* npts = _npts;
for( i = 0; i < ncontours; i++ )
{
Mat p = pts.getMat(i);
CV_Assert(p.checkVector(2, CV_32S) >= 0);
ptsptr[i] = (Point*)p.data;
npts[i] = p.rows*p.cols*p.channels()/2;
}
fillPoly(img, (const Point**)ptsptr, npts, (int)ncontours, color, lineType, shift, offset);
}
void cv::polylines(InputOutputArray _img, InputArrayOfArrays pts,
bool isClosed, const Scalar& color,
int thickness, int lineType, int shift )
{
Mat img = _img.getMat();
bool manyContours = pts.kind() == _InputArray::STD_VECTOR_VECTOR ||
pts.kind() == _InputArray::STD_VECTOR_MAT;
int i, ncontours = manyContours ? (int)pts.total() : 1;
if( ncontours == 0 )
return;
AutoBuffer<Point*> _ptsptr(ncontours);
AutoBuffer<int> _npts(ncontours);
Point** ptsptr = _ptsptr;
int* npts = _npts;
for( i = 0; i < ncontours; i++ )
{
Mat p = pts.getMat(manyContours ? i : -1);
if( p.total() == 0 )
continue;
CV_Assert(p.checkVector(2, CV_32S) >= 0);
ptsptr[i] = (Point*)p.data;
npts[i] = p.rows*p.cols*p.channels()/2;
}
polylines(img, (const Point**)ptsptr, npts, (int)ncontours, isClosed, color, thickness, lineType, shift);
}
static const int CodeDeltas[8][2] =
{ {1, 0}, {1, -1}, {0, -1}, {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1} };
#define CV_ADJUST_EDGE_COUNT( count, seq ) \
((count) -= ((count) == (seq)->total && !CV_IS_SEQ_CLOSED(seq)))
CV_IMPL void
cvDrawContours( void* _img, CvSeq* contour,
CvScalar _externalColor, CvScalar _holeColor,
int maxLevel, int thickness,
int line_type, CvPoint _offset )
{
CvSeq *contour0 = contour, *h_next = 0;
CvTreeNodeIterator iterator;
cv::vector<cv::PolyEdge> edges;
cv::vector<cv::Point> pts;
cv::Scalar externalColor = _externalColor, holeColor = _holeColor;
cv::Mat img = cv::cvarrToMat(_img);
cv::Point offset = _offset;
double ext_buf[4], hole_buf[4];
if( line_type == CV_AA && img.depth() != CV_8U )
line_type = 8;
if( !contour )
return;
CV_Assert( thickness <= 255 );
scalarToRawData( externalColor, ext_buf, img.type(), 0 );
scalarToRawData( holeColor, hole_buf, img.type(), 0 );
maxLevel = MAX(maxLevel, INT_MIN+2);
maxLevel = MIN(maxLevel, INT_MAX-1);
if( maxLevel < 0 )
{
h_next = contour->h_next;
contour->h_next = 0;
maxLevel = -maxLevel+1;
}
cvInitTreeNodeIterator( &iterator, contour, maxLevel );
while( (contour = (CvSeq*)cvNextTreeNode( &iterator )) != 0 )
{
CvSeqReader reader;
int i, count = contour->total;
int elem_type = CV_MAT_TYPE(contour->flags);
void* clr = (contour->flags & CV_SEQ_FLAG_HOLE) == 0 ? ext_buf : hole_buf;
cvStartReadSeq( contour, &reader, 0 );
if( thickness < 0 )
pts.resize(0);
if( CV_IS_SEQ_CHAIN_CONTOUR( contour ))
{
cv::Point pt = ((CvChain*)contour)->origin;
cv::Point prev_pt = pt;
char prev_code = reader.ptr ? reader.ptr[0] : '\0';
prev_pt += offset;
for( i = 0; i < count; i++ )
{
char code;
CV_READ_SEQ_ELEM( code, reader );
assert( (code & ~7) == 0 );
if( code != prev_code )
{
prev_code = code;
if( thickness >= 0 )
cv::ThickLine( img, prev_pt, pt, clr, thickness, line_type, 2, 0 );
else
pts.push_back(pt);
prev_pt = pt;
}
pt.x += CodeDeltas[(int)code][0];
pt.y += CodeDeltas[(int)code][1];
}
if( thickness >= 0 )
cv::ThickLine( img, prev_pt,
cv::Point(((CvChain*)contour)->origin) + offset,
clr, thickness, line_type, 2, 0 );
else
cv::CollectPolyEdges(img, &pts[0], (int)pts.size(),
edges, ext_buf, line_type, 0, offset);
}
else if( CV_IS_SEQ_POLYLINE( contour ))
{
CV_Assert( elem_type == CV_32SC2 );
cv::Point pt1, pt2;
int shift = 0;
count -= !CV_IS_SEQ_CLOSED(contour);
CV_READ_SEQ_ELEM( pt1, reader );
pt1 += offset;
if( thickness < 0 )
pts.push_back(pt1);
for( i = 0; i < count; i++ )
{
CV_READ_SEQ_ELEM( pt2, reader );
pt2 += offset;
if( thickness >= 0 )
cv::ThickLine( img, pt1, pt2, clr, thickness, line_type, 2, shift );
else
pts.push_back(pt2);
pt1 = pt2;
}
if( thickness < 0 )
cv::CollectPolyEdges( img, &pts[0], (int)pts.size(),
edges, ext_buf, line_type, 0, cv::Point() );
}
}
if( thickness < 0 )
cv::FillEdgeCollection( img, edges, ext_buf );
if( h_next && contour0 )
contour0->h_next = h_next;
}
CV_IMPL int
cvClipLine( CvSize size, CvPoint* pt1, CvPoint* pt2 )
{
CV_Assert( pt1 && pt2 );
return cv::clipLine( size, *(cv::Point*)pt1, *(cv::Point*)pt2 );
}
CV_IMPL int
cvEllipse2Poly( CvPoint center, CvSize axes, int angle,
int arc_start, int arc_end, CvPoint* _pts, int delta )
{
cv::vector<cv::Point> pts;
cv::ellipse2Poly( center, axes, angle, arc_start, arc_end, delta, pts );
memcpy( _pts, &pts[0], pts.size()*sizeof(_pts[0]) );
return (int)pts.size();
}
CV_IMPL CvScalar
cvColorToScalar( double packed_color, int type )
{
CvScalar scalar;
if( CV_MAT_DEPTH( type ) == CV_8U )
{
int icolor = cvRound( packed_color );
if( CV_MAT_CN( type ) > 1 )
{
scalar.val[0] = icolor & 255;
scalar.val[1] = (icolor >> 8) & 255;
scalar.val[2] = (icolor >> 16) & 255;
scalar.val[3] = (icolor >> 24) & 255;
}
else
{
scalar.val[0] = CV_CAST_8U( icolor );
scalar.val[1] = scalar.val[2] = scalar.val[3] = 0;
}
}
else if( CV_MAT_DEPTH( type ) == CV_8S )
{
int icolor = cvRound( packed_color );
if( CV_MAT_CN( type ) > 1 )
{
scalar.val[0] = (char)icolor;
scalar.val[1] = (char)(icolor >> 8);
scalar.val[2] = (char)(icolor >> 16);
scalar.val[3] = (char)(icolor >> 24);
}
else
{
scalar.val[0] = CV_CAST_8S( icolor );
scalar.val[1] = scalar.val[2] = scalar.val[3] = 0;
}
}
else
{
int cn = CV_MAT_CN( type );
switch( cn )
{
case 1:
scalar.val[0] = packed_color;
scalar.val[1] = scalar.val[2] = scalar.val[3] = 0;
break;
case 2:
scalar.val[0] = scalar.val[1] = packed_color;
scalar.val[2] = scalar.val[3] = 0;
break;
case 3:
scalar.val[0] = scalar.val[1] = scalar.val[2] = packed_color;
scalar.val[3] = 0;
break;
default:
scalar.val[0] = scalar.val[1] =
scalar.val[2] = scalar.val[3] = packed_color;
break;
}
}
return scalar;
}
CV_IMPL int
cvInitLineIterator( const CvArr* img, CvPoint pt1, CvPoint pt2,
CvLineIterator* iterator, int connectivity,
int left_to_right )
{
CV_Assert( iterator != 0 );
cv::LineIterator li(cv::cvarrToMat(img), pt1, pt2, connectivity, left_to_right!=0);
iterator->err = li.err;
iterator->minus_delta = li.minusDelta;
iterator->plus_delta = li.plusDelta;
iterator->minus_step = li.minusStep;
iterator->plus_step = li.plusStep;
iterator->ptr = li.ptr;
return li.count;
}
CV_IMPL void
cvLine( CvArr* _img, CvPoint pt1, CvPoint pt2, CvScalar color,
int thickness, int line_type, int shift )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::line( img, pt1, pt2, color, thickness, line_type, shift );
}
CV_IMPL void
cvRectangle( CvArr* _img, CvPoint pt1, CvPoint pt2,
CvScalar color, int thickness,
int line_type, int shift )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::rectangle( img, pt1, pt2, color, thickness, line_type, shift );
}
CV_IMPL void
cvRectangleR( CvArr* _img, CvRect rec,
CvScalar color, int thickness,
int line_type, int shift )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::rectangle( img, rec, color, thickness, line_type, shift );
}
CV_IMPL void
cvCircle( CvArr* _img, CvPoint center, int radius,
CvScalar color, int thickness, int line_type, int shift )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::circle( img, center, radius, color, thickness, line_type, shift );
}
CV_IMPL void
cvEllipse( CvArr* _img, CvPoint center, CvSize axes,
double angle, double start_angle, double end_angle,
CvScalar color, int thickness, int line_type, int shift )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::ellipse( img, center, axes, angle, start_angle, end_angle,
color, thickness, line_type, shift );
}
CV_IMPL void
cvFillConvexPoly( CvArr* _img, const CvPoint *pts, int npts,
CvScalar color, int line_type, int shift )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::fillConvexPoly( img, (const cv::Point*)pts, npts,
color, line_type, shift );
}
CV_IMPL void
cvFillPoly( CvArr* _img, CvPoint **pts, const int *npts, int ncontours,
CvScalar color, int line_type, int shift )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::fillPoly( img, (const cv::Point**)pts, npts, ncontours, color, line_type, shift );
}
CV_IMPL void
cvPolyLine( CvArr* _img, CvPoint **pts, const int *npts,
int ncontours, int closed, CvScalar color,
int thickness, int line_type, int shift )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::polylines( img, (const cv::Point**)pts, npts, ncontours,
closed != 0, color, thickness, line_type, shift );
}
CV_IMPL void
cvPutText( CvArr* _img, const char *text, CvPoint org, const CvFont *_font, CvScalar color )
{
cv::Mat img = cv::cvarrToMat(_img);
CV_Assert( text != 0 && _font != 0);
cv::putText( img, text, org, _font->font_face, (_font->hscale+_font->vscale)*0.5,
color, _font->thickness, _font->line_type,
CV_IS_IMAGE(_img) && ((IplImage*)_img)->origin != 0 );
}
CV_IMPL void
cvInitFont( CvFont *font, int font_face, double hscale, double vscale,
double shear, int thickness, int line_type )
{
CV_Assert( font != 0 && hscale > 0 && vscale > 0 && thickness >= 0 );
font->ascii = cv::getFontData(font_face);
font->font_face = font_face;
font->hscale = (float)hscale;
font->vscale = (float)vscale;
font->thickness = thickness;
font->shear = (float)shear;
font->greek = font->cyrillic = 0;
font->line_type = line_type;
}
CV_IMPL void
cvGetTextSize( const char *text, const CvFont *_font, CvSize *_size, int *_base_line )
{
CV_Assert(text != 0 && _font != 0);
cv::Size size = cv::getTextSize( text, _font->font_face, (_font->hscale + _font->vscale)*0.5,
_font->thickness, _base_line );
if( _size )
*_size = size;
}
/* End of file. */