opencv/modules/cudaarithm/src/cuda/split_merge.cu
2013-10-01 12:18:37 +04:00

249 lines
8.0 KiB
Plaintext

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/opencv_modules.hpp"
#ifndef HAVE_OPENCV_CUDEV
#error "opencv_cudev is required"
#else
#include "opencv2/cudaarithm.hpp"
#include "opencv2/cudev.hpp"
using namespace cv::cudev;
////////////////////////////////////////////////////////////////////////
/// merge
namespace
{
template <int cn, typename T> struct MergeFunc;
template <typename T> struct MergeFunc<2, T>
{
static void call(const GpuMat* src, GpuMat& dst, Stream& stream)
{
gridMerge(zipPtr(globPtr<T>(src[0]), globPtr<T>(src[1])),
globPtr<typename MakeVec<T, 2>::type>(dst),
stream);
}
};
template <typename T> struct MergeFunc<3, T>
{
static void call(const GpuMat* src, GpuMat& dst, Stream& stream)
{
gridMerge(zipPtr(globPtr<T>(src[0]), globPtr<T>(src[1]), globPtr<T>(src[2])),
globPtr<typename MakeVec<T, 3>::type>(dst),
stream);
}
};
template <typename T> struct MergeFunc<4, T>
{
static void call(const GpuMat* src, GpuMat& dst, Stream& stream)
{
gridMerge(zipPtr(globPtr<T>(src[0]), globPtr<T>(src[1]), globPtr<T>(src[2]), globPtr<T>(src[3])),
globPtr<typename MakeVec<T, 4>::type>(dst),
stream);
}
};
void mergeImpl(const GpuMat* src, size_t n, cv::OutputArray _dst, Stream& stream)
{
CV_DbgAssert( src != 0 );
CV_DbgAssert( n > 0 && n <= 4 );
const int depth = src[0].depth();
const cv::Size size = src[0].size();
#ifdef _DEBUG
for (size_t i = 0; i < n; ++i)
{
CV_Assert( src[i].size() == size );
CV_Assert( src[i].depth() == depth );
CV_Assert( src[i].channels() == 1 );
}
#endif
if (n == 1)
{
src[0].copyTo(_dst, stream);
}
else
{
typedef void (*func_t)(const GpuMat* src, GpuMat& dst, Stream& stream);
static const func_t funcs[3][5] =
{
{MergeFunc<2, uchar>::call, MergeFunc<2, ushort>::call, MergeFunc<2, int>::call, 0, MergeFunc<2, double>::call},
{MergeFunc<3, uchar>::call, MergeFunc<3, ushort>::call, MergeFunc<3, int>::call, 0, MergeFunc<3, double>::call},
{MergeFunc<4, uchar>::call, MergeFunc<4, ushort>::call, MergeFunc<4, int>::call, 0, MergeFunc<4, double>::call}
};
const int channels = static_cast<int>(n);
_dst.create(size, CV_MAKE_TYPE(depth, channels));
GpuMat dst = _dst.getGpuMat();
const func_t func = funcs[channels - 2][CV_ELEM_SIZE(depth) / 2];
if (func == 0)
CV_Error(cv::Error::StsUnsupportedFormat, "Unsupported channel count or data type");
func(src, dst, stream);
}
}
}
void cv::cuda::merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream)
{
mergeImpl(src, n, dst, stream);
}
void cv::cuda::merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream)
{
mergeImpl(&src[0], src.size(), dst, stream);
}
////////////////////////////////////////////////////////////////////////
/// split
namespace
{
template <int cn, typename T> struct SplitFunc;
template <typename T> struct SplitFunc<2, T>
{
static void call(const GpuMat& src, GpuMat* dst, Stream& stream)
{
GlobPtrSz<T> dstarr[2] =
{
globPtr<T>(dst[0]), globPtr<T>(dst[1])
};
gridSplit(globPtr<typename MakeVec<T, 2>::type>(src), dstarr, stream);
}
};
template <typename T> struct SplitFunc<3, T>
{
static void call(const GpuMat& src, GpuMat* dst, Stream& stream)
{
GlobPtrSz<T> dstarr[3] =
{
globPtr<T>(dst[0]), globPtr<T>(dst[1]), globPtr<T>(dst[2])
};
gridSplit(globPtr<typename MakeVec<T, 3>::type>(src), dstarr, stream);
}
};
template <typename T> struct SplitFunc<4, T>
{
static void call(const GpuMat& src, GpuMat* dst, Stream& stream)
{
GlobPtrSz<T> dstarr[4] =
{
globPtr<T>(dst[0]), globPtr<T>(dst[1]), globPtr<T>(dst[2]), globPtr<T>(dst[3])
};
gridSplit(globPtr<typename MakeVec<T, 4>::type>(src), dstarr, stream);
}
};
void splitImpl(const GpuMat& src, GpuMat* dst, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, GpuMat* dst, Stream& stream);
static const func_t funcs[3][5] =
{
{SplitFunc<2, uchar>::call, SplitFunc<2, ushort>::call, SplitFunc<2, int>::call, 0, SplitFunc<2, double>::call},
{SplitFunc<3, uchar>::call, SplitFunc<3, ushort>::call, SplitFunc<3, int>::call, 0, SplitFunc<3, double>::call},
{SplitFunc<4, uchar>::call, SplitFunc<4, ushort>::call, SplitFunc<4, int>::call, 0, SplitFunc<4, double>::call}
};
CV_DbgAssert( dst != 0 );
const int depth = src.depth();
const int channels = src.channels();
CV_DbgAssert( channels <= 4 );
if (channels == 0)
return;
if (channels == 1)
{
src.copyTo(dst[0], stream);
return;
}
for (int i = 0; i < channels; ++i)
dst[i].create(src.size(), depth);
const func_t func = funcs[channels - 2][CV_ELEM_SIZE(depth) / 2];
if (func == 0)
CV_Error(cv::Error::StsUnsupportedFormat, "Unsupported channel count or data type");
func(src, dst, stream);
}
}
void cv::cuda::split(InputArray _src, GpuMat* dst, Stream& stream)
{
GpuMat src = _src.getGpuMat();
splitImpl(src, dst, stream);
}
void cv::cuda::split(InputArray _src, std::vector<GpuMat>& dst, Stream& stream)
{
GpuMat src = _src.getGpuMat();
dst.resize(src.channels());
if (src.channels() > 0)
splitImpl(src, &dst[0], stream);
}
#endif