mirror of
https://github.com/opencv/opencv.git
synced 2024-12-04 08:49:14 +08:00
2a6fb2867e
Made all STL usages explicit to be able automatically find all usages of particular class or function.
198 lines
6.4 KiB
C++
198 lines
6.4 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
|
|
namespace {
|
|
|
|
template<typename _Tp> static inline bool
|
|
decomposeCholesky(_Tp* A, size_t astep, int m)
|
|
{
|
|
if (!Cholesky(A, astep, m, 0, 0, 0))
|
|
return false;
|
|
astep /= sizeof(A[0]);
|
|
for (int i = 0; i < m; ++i)
|
|
A[i*astep + i] = (_Tp)(1./A[i*astep + i]);
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
namespace cv {
|
|
namespace detail {
|
|
|
|
void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok)
|
|
{
|
|
CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3));
|
|
|
|
const double* h = reinterpret_cast<const double*>(H.data);
|
|
|
|
double d1, d2; // Denominators
|
|
double v1, v2; // Focal squares value candidates
|
|
|
|
f1_ok = true;
|
|
d1 = h[6] * h[7];
|
|
d2 = (h[7] - h[6]) * (h[7] + h[6]);
|
|
v1 = -(h[0] * h[1] + h[3] * h[4]) / d1;
|
|
v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2;
|
|
if (v1 < v2) std::swap(v1, v2);
|
|
if (v1 > 0 && v2 > 0) f1 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
|
|
else if (v1 > 0) f1 = std::sqrt(v1);
|
|
else f1_ok = false;
|
|
|
|
f0_ok = true;
|
|
d1 = h[0] * h[3] + h[1] * h[4];
|
|
d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4];
|
|
v1 = -h[2] * h[5] / d1;
|
|
v2 = (h[5] * h[5] - h[2] * h[2]) / d2;
|
|
if (v1 < v2) std::swap(v1, v2);
|
|
if (v1 > 0 && v2 > 0) f0 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
|
|
else if (v1 > 0) f0 = std::sqrt(v1);
|
|
else f0_ok = false;
|
|
}
|
|
|
|
|
|
void estimateFocal(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches,
|
|
std::vector<double> &focals)
|
|
{
|
|
const int num_images = static_cast<int>(features.size());
|
|
focals.resize(num_images);
|
|
|
|
std::vector<double> all_focals;
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
{
|
|
for (int j = 0; j < num_images; ++j)
|
|
{
|
|
const MatchesInfo &m = pairwise_matches[i*num_images + j];
|
|
if (m.H.empty())
|
|
continue;
|
|
double f0, f1;
|
|
bool f0ok, f1ok;
|
|
focalsFromHomography(m.H, f0, f1, f0ok, f1ok);
|
|
if (f0ok && f1ok)
|
|
all_focals.push_back(std::sqrt(f0 * f1));
|
|
}
|
|
}
|
|
|
|
if (static_cast<int>(all_focals.size()) >= num_images - 1)
|
|
{
|
|
double median;
|
|
|
|
std::sort(all_focals.begin(), all_focals.end());
|
|
if (all_focals.size() % 2 == 1)
|
|
median = all_focals[all_focals.size() / 2];
|
|
else
|
|
median = (all_focals[all_focals.size() / 2 - 1] + all_focals[all_focals.size() / 2]) * 0.5;
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
focals[i] = median;
|
|
}
|
|
else
|
|
{
|
|
LOGLN("Can't estimate focal length, will use naive approach");
|
|
double focals_sum = 0;
|
|
for (int i = 0; i < num_images; ++i)
|
|
focals_sum += features[i].img_size.width + features[i].img_size.height;
|
|
for (int i = 0; i < num_images; ++i)
|
|
focals[i] = focals_sum / num_images;
|
|
}
|
|
}
|
|
|
|
|
|
bool calibrateRotatingCamera(const std::vector<Mat> &Hs, Mat &K)
|
|
{
|
|
int m = static_cast<int>(Hs.size());
|
|
CV_Assert(m >= 1);
|
|
|
|
std::vector<Mat> Hs_(m);
|
|
for (int i = 0; i < m; ++i)
|
|
{
|
|
CV_Assert(Hs[i].size() == Size(3, 3) && Hs[i].type() == CV_64F);
|
|
Hs_[i] = Hs[i] / std::pow(determinant(Hs[i]), 1./3.);
|
|
}
|
|
|
|
const int idx_map[3][3] = {{0, 1, 2}, {1, 3, 4}, {2, 4, 5}};
|
|
Mat_<double> A(6*m, 6);
|
|
A.setTo(0);
|
|
|
|
int eq_idx = 0;
|
|
for (int k = 0; k < m; ++k)
|
|
{
|
|
Mat_<double> H(Hs_[k]);
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
for (int j = i; j < 3; ++j, ++eq_idx)
|
|
{
|
|
for (int l = 0; l < 3; ++l)
|
|
{
|
|
for (int s = 0; s < 3; ++s)
|
|
{
|
|
int idx = idx_map[l][s];
|
|
A(eq_idx, idx) += H(i,l) * H(j,s);
|
|
}
|
|
}
|
|
A(eq_idx, idx_map[i][j]) -= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
Mat_<double> wcoef;
|
|
SVD::solveZ(A, wcoef);
|
|
|
|
Mat_<double> W(3,3);
|
|
for (int i = 0; i < 3; ++i)
|
|
for (int j = i; j < 3; ++j)
|
|
W(i,j) = W(j,i) = wcoef(idx_map[i][j], 0) / wcoef(5,0);
|
|
if (!decomposeCholesky(W.ptr<double>(), W.step, 3))
|
|
return false;
|
|
W(0,1) = W(0,2) = W(1,2) = 0;
|
|
K = W.t();
|
|
return true;
|
|
}
|
|
|
|
} // namespace detail
|
|
} // namespace cv
|