mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00

[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Fix the build issue * Update concat_layer.cpp Still have some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Delete bib19450.aux * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Update dnn.cpp * Fix Error in dnn.cpp * Resolve duplication in conditions in convolution_layer.cpp * Fixed the issues in the comments * Fix building issue * Update tutorial * Fixed comments * Address the comments * Update CMakeLists.txt * Offer more accurate perf test on native * Add better perf tests for both native and web * Modify per tests for better results * Use more latest version of Electron * Support latest WebNN Clamp op * Add definition of HAVE_WEBNN macro * Support group convolution * Implement Scale_layer using WebNN * Add Softmax option for native classification example * Fix comments * Fix comments
381 lines
14 KiB
C++
381 lines
14 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
#include "../op_webnn.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/reshape.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
static void computeShapeByReshapeMask(const MatShape &srcShape,
|
|
const MatShape &maskShape,
|
|
Range srcRange /*= Range::all()*/,
|
|
MatShape& dstShape)
|
|
{
|
|
int srcShapeSize = (int)srcShape.size();
|
|
int maskShapeSize = (int)maskShape.size();
|
|
|
|
srcRange = normalize_axis_range(srcRange, srcShapeSize);
|
|
|
|
bool explicitMask = !maskShape.empty(); // All mask values are positive.
|
|
for (int i = 0, n = maskShape.size(); i < n && explicitMask; ++i)
|
|
{
|
|
explicitMask = maskShape[i] > 0;
|
|
}
|
|
// Working range of source shape is a range where area(src) == area(mask).
|
|
if (explicitMask)
|
|
{
|
|
int maskTotal = total(maskShape);
|
|
// Go from the end of mask until we collect required total.
|
|
bool matched = false;
|
|
for (int i = srcRange.end - 1; i >= srcRange.start; --i)
|
|
{
|
|
if (matched)
|
|
{
|
|
if (total(srcShape, i, srcRange.end) != maskTotal)
|
|
{
|
|
srcRange.start = i + 1;
|
|
break;
|
|
}
|
|
else if (i == 0)
|
|
{
|
|
srcRange.start = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
matched = total(srcShape, i, srcRange.end) == maskTotal;
|
|
}
|
|
}
|
|
while (total(srcShape, srcRange.start, srcRange.end) != maskTotal && srcRange.start > 0)
|
|
{
|
|
srcRange.start -= 1;
|
|
}
|
|
CV_Assert(total(srcShape, srcRange.start, srcRange.end) == maskTotal);
|
|
}
|
|
|
|
CV_Assert(0 <= srcRange.start && srcRange.start <= srcRange.end && srcRange.end <= srcShapeSize);
|
|
int dstShapeSize = srcShapeSize - srcRange.size() + maskShapeSize;
|
|
dstShape.resize(dstShapeSize);
|
|
|
|
std::copy(srcShape.begin(), srcShape.begin() + srcRange.start, dstShape.begin());
|
|
std::copy(srcShape.begin() + srcRange.end, srcShape.begin() + srcShapeSize, dstShape.begin() + srcRange.start + maskShapeSize);
|
|
|
|
int inferDim = -1;
|
|
for (int i = 0; i < maskShapeSize; i++)
|
|
{
|
|
if (maskShape[i] > 0)
|
|
{
|
|
dstShape[srcRange.start + i] = maskShape[i];
|
|
}
|
|
else if (maskShape[i] == 0)
|
|
{
|
|
if (srcRange.start + i >= srcShapeSize)
|
|
CV_Error(Error::StsBadArg, format("Copy dim[%d] (which has zero size) is out of the source shape bounds", srcRange.start + i));
|
|
dstShape[srcRange.start + i] = srcShape[srcRange.start + i];
|
|
}
|
|
else if (maskShape[i] == -1)
|
|
{
|
|
if (inferDim != -1)
|
|
CV_Error(Error::StsAssert, "Duplicate of inferred dim (which is denoted by -1)");
|
|
inferDim = srcRange.start + i;
|
|
dstShape[inferDim] = 1;
|
|
}
|
|
else
|
|
CV_Error(Error::StsBadArg, "maskShape[i] >= -1");
|
|
}
|
|
|
|
size_t srcTotal = total(srcShape);
|
|
size_t dstTotal = total(dstShape);
|
|
CV_Assert(dstTotal != 0);
|
|
|
|
if (inferDim != -1)
|
|
{
|
|
if (srcTotal % dstTotal != 0)
|
|
CV_Error(Error::StsBackTrace, "Can't infer a dim denoted by -1");
|
|
|
|
dstShape[inferDim] = (int)(srcTotal / dstTotal);
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(srcTotal == dstTotal);
|
|
}
|
|
}
|
|
|
|
|
|
class ReshapeLayerImpl CV_FINAL : public ReshapeLayer
|
|
{
|
|
public:
|
|
ReshapeLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
int axis = params.get<int>("axis", 0);
|
|
int numAxes = params.get<int>("num_axes", -1);
|
|
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
|
|
shapesInitialized = !hasDynamicShapes;
|
|
|
|
CV_Assert(numAxes >= -1);
|
|
newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes);
|
|
|
|
newShapeDesc.clear();
|
|
if (params.has("dim"))
|
|
{
|
|
const DictValue ¶mShape = params.get("dim");
|
|
int i, dims = paramShape.size();
|
|
newShapeDesc.resize(dims);
|
|
for (i = 0; i < dims; i++)
|
|
newShapeDesc[i] = paramShape.get<int>(i);
|
|
}
|
|
if (hasDynamicShapes)
|
|
{
|
|
dynamicShapes.clear();
|
|
inputIndices.clear();
|
|
if (params.has("dynamic_axes")) {
|
|
CV_Assert(params.has("input_indices"));
|
|
const DictValue &dynamicAxes = params.get("dynamic_axes");
|
|
const DictValue &dynamicInputShapes = params.get("input_indices");
|
|
int i, dims = dynamicAxes.size();
|
|
CV_Assert(dims == dynamicInputShapes.size());
|
|
CV_Assert(dims > 0);
|
|
dynamicShapes.resize(dims);
|
|
inputIndices.resize(dims);
|
|
for (i = 0; i < dims; i++) {
|
|
dynamicShapes[i] = dynamicAxes.get<int>(i);
|
|
inputIndices[i] = dynamicInputShapes.get<int>(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_CUDA ||
|
|
backendId == DNN_BACKEND_WEBNN ||
|
|
((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && haveInfEngine());
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
|
|
if (inputs.size() == 1 || inputs.size() == requiredOutputs)
|
|
{
|
|
outputs.clear();
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
if (hasDynamicShapes && !shapesInitialized)
|
|
{
|
|
outputs.push_back(newShapeDesc);
|
|
}
|
|
else
|
|
{
|
|
outputs.push_back(MatShape());
|
|
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CV_Assert_N(inputs.size() == 2, total(inputs[0]) == total(inputs[1]));
|
|
outputs.assign(1, inputs[1]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
|
|
{
|
|
if (hasDynamicShapes)
|
|
{
|
|
for (int i = 0; i < dynamicShapes.size(); ++i)
|
|
{
|
|
newShapeDesc[dynamicShapes[i]] = inputs[0][inputIndices[i]];
|
|
}
|
|
}
|
|
shapesInitialized = true;
|
|
return true;
|
|
}
|
|
|
|
void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
std::vector<Mat> outputs;
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
CV_Assert(!outputs.empty());
|
|
outShapes.resize(outputs.size());
|
|
for (int i = 0; i < outputs.size(); ++i)
|
|
outShapes[i] = shape(outputs[i]);
|
|
}
|
|
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
|
|
for (size_t i = 0; i < outputs.size(); i++)
|
|
{
|
|
UMat srcBlob = inputs[i];
|
|
void *src_handle = inputs[i].handle(ACCESS_READ);
|
|
void *dst_handle = outputs[i].handle(ACCESS_WRITE);
|
|
if (src_handle != dst_handle)
|
|
{
|
|
UMat umat = srcBlob.reshape(1, (int)outShapes[i].size(), &outShapes[i][0]);
|
|
umat.copyTo(outputs[i]);
|
|
}
|
|
}
|
|
outs.assign(outputs);
|
|
|
|
return true;
|
|
}
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
for (size_t i = 0; i < outputs.size(); i++)
|
|
{
|
|
Mat srcBlob = inputs[i];
|
|
if (outputs[i].data != srcBlob.data)
|
|
srcBlob.reshape(1, shape(outputs[i])).copyTo(outputs[i]);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::Builder::ReshapeLayer ieLayer(name);
|
|
CV_Assert(outShapes.size() == 1);
|
|
ieLayer.setDims(outShapes[0]);
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
}
|
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
CV_Assert(outShapes.size() == 1);
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
|
|
std::vector<int64_t> out(outShapes[0].begin(), outShapes[0].end());
|
|
auto shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
|
ngraph::Shape{out.size()}, out.data());
|
|
auto reshape = std::make_shared<ngraph::op::v1::Reshape>(ieInpNode, shape, true);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(reshape));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
#ifdef HAVE_WEBNN
|
|
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
|
|
auto& webnnInpOperand = node->operand;
|
|
auto& webnnGraphBuilder = node->net->builder;
|
|
const std::vector<int32_t> out(outShapes[0].begin(), outShapes[0].end());
|
|
auto operand = webnnGraphBuilder.Reshape(webnnInpOperand, out.data(), out.size());
|
|
return Ptr<BackendNode>(new WebnnBackendNode(operand));
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
return make_cuda_node<cuda4dnn::ReshapeOp>(preferableTarget, std::move(context->stream));
|
|
}
|
|
#endif
|
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
|
{
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
std::vector<MatShape> outShapes;
|
|
std::vector<int> dynamicShapes; // Which axes shapes are dynamic and require reinitialization with new input
|
|
std::vector<int> inputIndices; // Which axes from input are needed to compute correct output shape
|
|
bool hasDynamicShapes;
|
|
bool shapesInitialized;
|
|
};
|
|
|
|
Ptr<ReshapeLayer> ReshapeLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<ReshapeLayer>(new ReshapeLayerImpl(params));
|
|
}
|
|
|
|
|
|
}
|
|
}
|