opencv/modules/cudaimgproc/perf/perf_match_template.cpp
Roman Donchenko fee2ed37fc Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts:
	modules/contrib/src/retina.cpp
	modules/core/include/opencv2/core/mat.hpp
	modules/core/src/algorithm.cpp
	modules/core/src/arithm.cpp
	modules/features2d/src/features2d_init.cpp
	modules/gpu/include/opencv2/gpu/gpu.hpp
	modules/gpu/perf/perf_imgproc.cpp
	modules/imgproc/src/generalized_hough.cpp
	modules/ocl/include/opencv2/ocl/ocl.hpp
	modules/video/src/tvl1flow.cpp
	modules/video/src/video_init.cpp
2014-01-14 11:53:59 +04:00

136 lines
4.8 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
using namespace perf;
////////////////////////////////////////////////////////////////////////////////
// MatchTemplate8U
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED)
DEF_PARAM_TEST(Sz_TemplateSz_Cn_Method, cv::Size, cv::Size, MatCn, TemplateMethod);
PERF_TEST_P(Sz_TemplateSz_Cn_Method, MatchTemplate8U,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)),
CUDA_CHANNELS_1_3_4,
TemplateMethod::all()))
{
declare.time(300.0);
const cv::Size size = GET_PARAM(0);
const cv::Size templ_size = GET_PARAM(1);
const int cn = GET_PARAM(2);
const int method = GET_PARAM(3);
cv::Mat image(size, CV_MAKE_TYPE(CV_8U, cn));
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_8U, cn));
declare.in(image, templ, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_image(image);
const cv::cuda::GpuMat d_templ(templ);
cv::cuda::GpuMat dst;
cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), method);
TEST_CYCLE() alg->match(d_image, d_templ, dst);
CUDA_SANITY_CHECK(dst, 1e-5, ERROR_RELATIVE);
}
else
{
cv::Mat dst;
TEST_CYCLE() cv::matchTemplate(image, templ, dst, method);
CPU_SANITY_CHECK(dst);
}
}
////////////////////////////////////////////////////////////////////////////////
// MatchTemplate32F
PERF_TEST_P(Sz_TemplateSz_Cn_Method, MatchTemplate32F,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)),
CUDA_CHANNELS_1_3_4,
Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))))
{
declare.time(300.0);
const cv::Size size = GET_PARAM(0);
const cv::Size templ_size = GET_PARAM(1);
const int cn = GET_PARAM(2);
int method = GET_PARAM(3);
cv::Mat image(size, CV_MAKE_TYPE(CV_32F, cn));
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_32F, cn));
declare.in(image, templ, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_image(image);
const cv::cuda::GpuMat d_templ(templ);
cv::cuda::GpuMat dst;
cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), method);
TEST_CYCLE() alg->match(d_image, d_templ, dst);
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
else
{
cv::Mat dst;
TEST_CYCLE() cv::matchTemplate(image, templ, dst, method);
CPU_SANITY_CHECK(dst);
}
}