mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 19:54:18 +08:00
e6ec42d462
* Fix trees parsing behavior in hierarchical_clustering_index: Before, when maxCheck was reached in the first descent of a tree, time was still wasted parsing the next trees till their best leaf, just to skip the points stored there. Now we can choose either to keep this behavior, and so we skip parsing other trees after reaching maxCheck, or we choose to do one descent in each tree, even if in one tree we reach maxCheck. * Apply the same change to kdtree. As each leaf contains only 1 point (unlike hierarchical_clustering), difference is visible if trees > maxCheck * Add the new explore_all_trees parameters to miniflann * Adapt the FlannBasedMatcher read_write test to the additional search parameter * Adapt java tests to the additional parameter in SearchParams * Fix the ABI dumps failure on SearchParams interface change * Support of ctor calling another ctor of the class is only fully supported from C+11
390 lines
12 KiB
Java
390 lines
12 KiB
Java
package org.opencv.test.features2d;
|
|
|
|
import java.util.Arrays;
|
|
import java.util.List;
|
|
|
|
import org.opencv.core.CvException;
|
|
import org.opencv.core.CvType;
|
|
import org.opencv.core.Mat;
|
|
import org.opencv.core.MatOfDMatch;
|
|
import org.opencv.core.MatOfKeyPoint;
|
|
import org.opencv.core.Point;
|
|
import org.opencv.core.Scalar;
|
|
import org.opencv.core.DMatch;
|
|
import org.opencv.features2d.DescriptorMatcher;
|
|
import org.opencv.features2d.FlannBasedMatcher;
|
|
import org.opencv.core.KeyPoint;
|
|
import org.opencv.test.OpenCVTestCase;
|
|
import org.opencv.test.OpenCVTestRunner;
|
|
import org.opencv.imgproc.Imgproc;
|
|
import org.opencv.features2d.Feature2D;
|
|
|
|
public class FlannBasedDescriptorMatcherTest extends OpenCVTestCase {
|
|
|
|
static final String xmlParamsDefault = "<?xml version=\"1.0\"?>\n"
|
|
+ "<opencv_storage>\n"
|
|
+ "<format>3</format>\n"
|
|
+ "<indexParams>\n"
|
|
+ " <_>\n"
|
|
+ " <name>algorithm</name>\n"
|
|
+ " <type>9</type>\n" // FLANN_INDEX_TYPE_ALGORITHM
|
|
+ " <value>1</value></_>\n"
|
|
+ " <_>\n"
|
|
+ " <name>trees</name>\n"
|
|
+ " <type>4</type>\n"
|
|
+ " <value>4</value></_></indexParams>\n"
|
|
+ "<searchParams>\n"
|
|
+ " <_>\n"
|
|
+ " <name>checks</name>\n"
|
|
+ " <type>4</type>\n"
|
|
+ " <value>32</value></_>\n"
|
|
+ " <_>\n"
|
|
+ " <name>eps</name>\n"
|
|
+ " <type>5</type>\n"
|
|
+ " <value>0.</value></_>\n"
|
|
+ " <_>\n"
|
|
+ " <name>explore_all_trees</name>\n"
|
|
+ " <type>8</type>\n"
|
|
+ " <value>0</value></_>\n"
|
|
+ " <_>\n"
|
|
+ " <name>sorted</name>\n"
|
|
+ " <type>8</type>\n" // FLANN_INDEX_TYPE_BOOL
|
|
+ " <value>1</value></_></searchParams>\n"
|
|
+ "</opencv_storage>\n";
|
|
static final String ymlParamsDefault = "%YAML:1.0\n---\n"
|
|
+ "format: 3\n"
|
|
+ "indexParams:\n"
|
|
+ " -\n"
|
|
+ " name: algorithm\n"
|
|
+ " type: 9\n" // FLANN_INDEX_TYPE_ALGORITHM
|
|
+ " value: 1\n"
|
|
+ " -\n"
|
|
+ " name: trees\n"
|
|
+ " type: 4\n"
|
|
+ " value: 4\n"
|
|
+ "searchParams:\n"
|
|
+ " -\n"
|
|
+ " name: checks\n"
|
|
+ " type: 4\n"
|
|
+ " value: 32\n"
|
|
+ " -\n"
|
|
+ " name: eps\n"
|
|
+ " type: 5\n"
|
|
+ " value: 0.\n"
|
|
+ " -\n"
|
|
+ " name: explore_all_trees\n"
|
|
+ " type: 8\n"
|
|
+ " value: 0\n"
|
|
+ " -\n"
|
|
+ " name: sorted\n"
|
|
+ " type: 8\n" // FLANN_INDEX_TYPE_BOOL
|
|
+ " value: 1\n";
|
|
static final String ymlParamsModified = "%YAML:1.0\n---\n"
|
|
+ "format: 3\n"
|
|
+ "indexParams:\n"
|
|
+ " -\n"
|
|
+ " name: algorithm\n"
|
|
+ " type: 9\n" // FLANN_INDEX_TYPE_ALGORITHM
|
|
+ " value: 6\n"// this line is changed!
|
|
+ " -\n"
|
|
+ " name: trees\n"
|
|
+ " type: 4\n"
|
|
+ " value: 4\n"
|
|
+ "searchParams:\n"
|
|
+ " -\n"
|
|
+ " name: checks\n"
|
|
+ " type: 4\n"
|
|
+ " value: 32\n"
|
|
+ " -\n"
|
|
+ " name: eps\n"
|
|
+ " type: 5\n"
|
|
+ " value: 4.\n"// this line is changed!
|
|
+ " -\n"
|
|
+ " name: explore_all_trees\n"
|
|
+ " type: 8\n"
|
|
+ " value: 1\n"// this line is changed!
|
|
+ " -\n"
|
|
+ " name: sorted\n"
|
|
+ " type: 8\n" // FLANN_INDEX_TYPE_BOOL
|
|
+ " value: 1\n";
|
|
|
|
DescriptorMatcher matcher;
|
|
|
|
int matSize;
|
|
|
|
DMatch[] truth;
|
|
|
|
private Mat getMaskImg() {
|
|
return new Mat(5, 2, CvType.CV_8U, new Scalar(0)) {
|
|
{
|
|
put(0, 0, 1, 1, 1, 1);
|
|
}
|
|
};
|
|
}
|
|
|
|
private Mat getQueryDescriptors() {
|
|
Mat img = getQueryImg();
|
|
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
|
Mat descriptors = new Mat();
|
|
|
|
Feature2D detector = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
|
|
Feature2D extractor = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
|
|
|
|
setProperty(detector, "hessianThreshold", "double", 8000);
|
|
setProperty(detector, "nOctaves", "int", 3);
|
|
setProperty(detector, "upright", "boolean", false);
|
|
|
|
detector.detect(img, keypoints);
|
|
extractor.compute(img, keypoints, descriptors);
|
|
|
|
return descriptors;
|
|
}
|
|
|
|
private Mat getQueryImg() {
|
|
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
|
Imgproc.line(cross, new Point(30, matSize / 2), new Point(matSize - 31, matSize / 2), new Scalar(100), 3);
|
|
Imgproc.line(cross, new Point(matSize / 2, 30), new Point(matSize / 2, matSize - 31), new Scalar(100), 3);
|
|
|
|
return cross;
|
|
}
|
|
|
|
private Mat getTrainDescriptors() {
|
|
Mat img = getTrainImg();
|
|
MatOfKeyPoint keypoints = new MatOfKeyPoint(new KeyPoint(50, 50, 16, 0, 20000, 1, -1), new KeyPoint(42, 42, 16, 160, 10000, 1, -1));
|
|
Mat descriptors = new Mat();
|
|
|
|
Feature2D extractor = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
|
|
|
|
extractor.compute(img, keypoints, descriptors);
|
|
|
|
return descriptors;
|
|
}
|
|
|
|
private Mat getTrainImg() {
|
|
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
|
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
|
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
|
|
|
return cross;
|
|
}
|
|
|
|
protected void setUp() throws Exception {
|
|
super.setUp();
|
|
matcher = DescriptorMatcher.create(DescriptorMatcher.FLANNBASED);
|
|
matSize = 100;
|
|
truth = new DMatch[] {
|
|
new DMatch(0, 0, 0, 0.6159003f),
|
|
new DMatch(1, 1, 0, 0.9177120f),
|
|
new DMatch(2, 1, 0, 0.3112163f),
|
|
new DMatch(3, 1, 0, 0.2925075f),
|
|
new DMatch(4, 1, 0, 0.26520672f)
|
|
};
|
|
}
|
|
|
|
// https://github.com/opencv/opencv/issues/11268
|
|
public void testConstructor()
|
|
{
|
|
FlannBasedMatcher self_created_matcher = new FlannBasedMatcher();
|
|
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
|
self_created_matcher.add(Arrays.asList(train));
|
|
assertTrue(!self_created_matcher.empty());
|
|
}
|
|
|
|
public void testAdd() {
|
|
matcher.add(Arrays.asList(new Mat()));
|
|
assertFalse(matcher.empty());
|
|
}
|
|
|
|
public void testClear() {
|
|
matcher.add(Arrays.asList(new Mat()));
|
|
|
|
matcher.clear();
|
|
|
|
assertTrue(matcher.empty());
|
|
}
|
|
|
|
public void testClone() {
|
|
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
|
matcher.add(Arrays.asList(train));
|
|
|
|
try {
|
|
matcher.clone();
|
|
fail("Expected CvException (CV_StsNotImplemented)");
|
|
} catch (CvException cverr) {
|
|
// expected
|
|
}
|
|
}
|
|
|
|
public void testCloneBoolean() {
|
|
matcher.add(Arrays.asList(new Mat()));
|
|
|
|
DescriptorMatcher cloned = matcher.clone(true);
|
|
|
|
assertNotNull(cloned);
|
|
assertTrue(cloned.empty());
|
|
}
|
|
|
|
public void testCreate() {
|
|
assertNotNull(matcher);
|
|
}
|
|
|
|
public void testEmpty() {
|
|
assertTrue(matcher.empty());
|
|
}
|
|
|
|
public void testGetTrainDescriptors() {
|
|
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
|
Mat truth = train.clone();
|
|
matcher.add(Arrays.asList(train));
|
|
|
|
List<Mat> descriptors = matcher.getTrainDescriptors();
|
|
|
|
assertEquals(1, descriptors.size());
|
|
assertMatEqual(truth, descriptors.get(0));
|
|
}
|
|
|
|
public void testIsMaskSupported() {
|
|
assertFalse(matcher.isMaskSupported());
|
|
}
|
|
|
|
public void testKnnMatchMatListOfListOfDMatchInt() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testKnnMatchMatMatListOfListOfDMatchInt() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testMatchMatListOfDMatch() {
|
|
Mat train = getTrainDescriptors();
|
|
Mat query = getQueryDescriptors();
|
|
MatOfDMatch matches = new MatOfDMatch();
|
|
matcher.add(Arrays.asList(train));
|
|
matcher.train();
|
|
|
|
matcher.match(query, matches);
|
|
|
|
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
|
}
|
|
|
|
public void testMatchMatListOfDMatchListOfMat() {
|
|
Mat train = getTrainDescriptors();
|
|
Mat query = getQueryDescriptors();
|
|
Mat mask = getMaskImg();
|
|
MatOfDMatch matches = new MatOfDMatch();
|
|
matcher.add(Arrays.asList(train));
|
|
matcher.train();
|
|
|
|
matcher.match(query, matches, Arrays.asList(mask));
|
|
|
|
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
|
}
|
|
|
|
public void testMatchMatMatListOfDMatch() {
|
|
Mat train = getTrainDescriptors();
|
|
Mat query = getQueryDescriptors();
|
|
MatOfDMatch matches = new MatOfDMatch();
|
|
|
|
matcher.match(query, train, matches);
|
|
|
|
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
|
|
|
// OpenCVTestRunner.Log(matches.toString());
|
|
// OpenCVTestRunner.Log(matches);
|
|
}
|
|
|
|
public void testMatchMatMatListOfDMatchMat() {
|
|
Mat train = getTrainDescriptors();
|
|
Mat query = getQueryDescriptors();
|
|
Mat mask = getMaskImg();
|
|
MatOfDMatch matches = new MatOfDMatch();
|
|
|
|
matcher.match(query, train, matches, mask);
|
|
|
|
assertListDMatchEquals(Arrays.asList(truth), matches.toList(), EPS);
|
|
}
|
|
|
|
public void testRadiusMatchMatListOfListOfDMatchFloat() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
|
|
fail("Not yet implemented");
|
|
}
|
|
|
|
public void testRead() {
|
|
String filenameR = OpenCVTestRunner.getTempFileName("yml");
|
|
String filenameW = OpenCVTestRunner.getTempFileName("yml");
|
|
writeFile(filenameR, ymlParamsModified);
|
|
|
|
matcher.read(filenameR);
|
|
matcher.write(filenameW);
|
|
|
|
assertEquals(ymlParamsModified, readFile(filenameW));
|
|
}
|
|
|
|
public void testTrain() {
|
|
Mat train = getTrainDescriptors();
|
|
matcher.add(Arrays.asList(train));
|
|
matcher.train();
|
|
}
|
|
|
|
public void testTrainNoData() {
|
|
try {
|
|
matcher.train();
|
|
fail("Expected CvException - FlannBasedMatcher::train should fail on empty train set");
|
|
} catch (CvException cverr) {
|
|
// expected
|
|
}
|
|
}
|
|
|
|
public void testWrite() {
|
|
String filename = OpenCVTestRunner.getTempFileName("xml");
|
|
|
|
matcher.write(filename);
|
|
|
|
assertEquals(xmlParamsDefault, readFile(filename));
|
|
}
|
|
|
|
public void testWriteYml() {
|
|
String filename = OpenCVTestRunner.getTempFileName("yml");
|
|
|
|
matcher.write(filename);
|
|
|
|
assertEquals(ymlParamsDefault, readFile(filename));
|
|
}
|
|
|
|
}
|