mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
5ff1fababc
ml: refactored tests * use parametrized tests where appropriate * use stable theRNG in most tests * use modern style with EXPECT_/ASSERT_ checks
187 lines
6.5 KiB
C++
187 lines
6.5 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
CV_ENUM(EM_START_STEP, EM::START_AUTO_STEP, EM::START_M_STEP, EM::START_E_STEP)
|
|
CV_ENUM(EM_COV_MAT, EM::COV_MAT_GENERIC, EM::COV_MAT_DIAGONAL, EM::COV_MAT_SPHERICAL)
|
|
|
|
typedef testing::TestWithParam< tuple<EM_START_STEP, EM_COV_MAT> > ML_EM_Params;
|
|
|
|
TEST_P(ML_EM_Params, accuracy)
|
|
{
|
|
const int nclusters = 3;
|
|
const int sizesArr[] = { 500, 700, 800 };
|
|
const vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
|
const int pointsCount = sizesArr[0] + sizesArr[1] + sizesArr[2];
|
|
Mat means;
|
|
vector<Mat> covs;
|
|
defaultDistribs( means, covs, CV_64FC1 );
|
|
Mat trainData(pointsCount, 2, CV_64FC1 );
|
|
Mat trainLabels;
|
|
generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
|
|
Mat testData( pointsCount, 2, CV_64FC1 );
|
|
Mat testLabels;
|
|
generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
|
|
Mat probs(trainData.rows, nclusters, CV_64FC1, cv::Scalar(1));
|
|
Mat weights(1, nclusters, CV_64FC1, cv::Scalar(1));
|
|
TermCriteria termCrit(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, FLT_EPSILON);
|
|
int startStep = get<0>(GetParam());
|
|
int covMatType = get<1>(GetParam());
|
|
cv::Mat labels;
|
|
|
|
Ptr<EM> em = EM::create();
|
|
em->setClustersNumber(nclusters);
|
|
em->setCovarianceMatrixType(covMatType);
|
|
em->setTermCriteria(termCrit);
|
|
if( startStep == EM::START_AUTO_STEP )
|
|
em->trainEM( trainData, noArray(), labels, noArray() );
|
|
else if( startStep == EM::START_E_STEP )
|
|
em->trainE( trainData, means, covs, weights, noArray(), labels, noArray() );
|
|
else if( startStep == EM::START_M_STEP )
|
|
em->trainM( trainData, probs, noArray(), labels, noArray() );
|
|
|
|
{
|
|
SCOPED_TRACE("Train");
|
|
float err = 1000;
|
|
EXPECT_TRUE(calcErr( labels, trainLabels, sizes, err , false, false ));
|
|
EXPECT_LE(err, 0.008f);
|
|
}
|
|
|
|
{
|
|
SCOPED_TRACE("Test");
|
|
float err = 1000;
|
|
labels.create( testData.rows, 1, CV_32SC1 );
|
|
for( int i = 0; i < testData.rows; i++ )
|
|
{
|
|
Mat sample = testData.row(i);
|
|
Mat out_probs;
|
|
labels.at<int>(i) = static_cast<int>(em->predict2( sample, out_probs )[1]);
|
|
}
|
|
EXPECT_TRUE(calcErr( labels, testLabels, sizes, err, false, false ));
|
|
EXPECT_LE(err, 0.008f);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, ML_EM_Params,
|
|
testing::Combine(
|
|
testing::Values(EM::START_AUTO_STEP, EM::START_M_STEP, EM::START_E_STEP),
|
|
testing::Values(EM::COV_MAT_GENERIC, EM::COV_MAT_DIAGONAL, EM::COV_MAT_SPHERICAL)
|
|
));
|
|
|
|
//==================================================================================================
|
|
|
|
TEST(ML_EM, save_load)
|
|
{
|
|
const int nclusters = 2;
|
|
Mat_<double> samples(3, 1);
|
|
samples << 1., 2., 3.;
|
|
|
|
std::vector<double> firstResult;
|
|
string filename = cv::tempfile(".xml");
|
|
{
|
|
Mat labels;
|
|
Ptr<EM> em = EM::create();
|
|
em->setClustersNumber(nclusters);
|
|
em->trainEM(samples, noArray(), labels, noArray());
|
|
for( int i = 0; i < samples.rows; i++)
|
|
{
|
|
Vec2d res = em->predict2(samples.row(i), noArray());
|
|
firstResult.push_back(res[1]);
|
|
}
|
|
{
|
|
FileStorage fs = FileStorage(filename, FileStorage::WRITE);
|
|
ASSERT_NO_THROW(fs << "em" << "{");
|
|
ASSERT_NO_THROW(em->write(fs));
|
|
ASSERT_NO_THROW(fs << "}");
|
|
}
|
|
}
|
|
{
|
|
Ptr<EM> em;
|
|
ASSERT_NO_THROW(em = Algorithm::load<EM>(filename));
|
|
for( int i = 0; i < samples.rows; i++)
|
|
{
|
|
SCOPED_TRACE(i);
|
|
Vec2d res = em->predict2(samples.row(i), noArray());
|
|
EXPECT_DOUBLE_EQ(firstResult[i], res[1]);
|
|
}
|
|
}
|
|
remove(filename.c_str());
|
|
}
|
|
|
|
//==================================================================================================
|
|
|
|
TEST(ML_EM, classification)
|
|
{
|
|
// This test classifies spam by the following way:
|
|
// 1. estimates distributions of "spam" / "not spam"
|
|
// 2. predict classID using Bayes classifier for estimated distributions.
|
|
string dataFilename = findDataFile("spambase.data");
|
|
Ptr<TrainData> data = TrainData::loadFromCSV(dataFilename, 0);
|
|
ASSERT_FALSE(data.empty());
|
|
|
|
Mat samples = data->getSamples();
|
|
ASSERT_EQ(samples.cols, 57);
|
|
Mat responses = data->getResponses();
|
|
|
|
vector<int> trainSamplesMask(samples.rows, 0);
|
|
const int trainSamplesCount = (int)(0.5f * samples.rows);
|
|
const int testSamplesCount = samples.rows - trainSamplesCount;
|
|
for(int i = 0; i < trainSamplesCount; i++)
|
|
trainSamplesMask[i] = 1;
|
|
RNG &rng = cv::theRNG();
|
|
for(size_t i = 0; i < trainSamplesMask.size(); i++)
|
|
{
|
|
int i1 = rng(static_cast<unsigned>(trainSamplesMask.size()));
|
|
int i2 = rng(static_cast<unsigned>(trainSamplesMask.size()));
|
|
std::swap(trainSamplesMask[i1], trainSamplesMask[i2]);
|
|
}
|
|
|
|
Mat samples0, samples1;
|
|
for(int i = 0; i < samples.rows; i++)
|
|
{
|
|
if(trainSamplesMask[i])
|
|
{
|
|
Mat sample = samples.row(i);
|
|
int resp = (int)responses.at<float>(i);
|
|
if(resp == 0)
|
|
samples0.push_back(sample);
|
|
else
|
|
samples1.push_back(sample);
|
|
}
|
|
}
|
|
|
|
Ptr<EM> model0 = EM::create();
|
|
model0->setClustersNumber(3);
|
|
model0->trainEM(samples0, noArray(), noArray(), noArray());
|
|
|
|
Ptr<EM> model1 = EM::create();
|
|
model1->setClustersNumber(3);
|
|
model1->trainEM(samples1, noArray(), noArray(), noArray());
|
|
|
|
// confusion matrices
|
|
Mat_<int> trainCM(2, 2, 0);
|
|
Mat_<int> testCM(2, 2, 0);
|
|
const double lambda = 1.;
|
|
for(int i = 0; i < samples.rows; i++)
|
|
{
|
|
Mat sample = samples.row(i);
|
|
double sampleLogLikelihoods0 = model0->predict2(sample, noArray())[0];
|
|
double sampleLogLikelihoods1 = model1->predict2(sample, noArray())[0];
|
|
int classID = (sampleLogLikelihoods0 >= lambda * sampleLogLikelihoods1) ? 0 : 1;
|
|
int resp = (int)responses.at<float>(i);
|
|
EXPECT_TRUE(resp == 0 || resp == 1);
|
|
if(trainSamplesMask[i])
|
|
trainCM(resp, classID)++;
|
|
else
|
|
testCM(resp, classID)++;
|
|
}
|
|
EXPECT_LE((double)(trainCM(1,0) + trainCM(0,1)) / trainSamplesCount, 0.23);
|
|
EXPECT_LE((double)(testCM(1,0) + testCM(0,1)) / testSamplesCount, 0.26);
|
|
}
|
|
|
|
}} // namespace
|