opencv/modules/dnn/src/cuda4dnn/primitives/eltwise.hpp
2019-12-06 21:28:36 +05:30

119 lines
4.4 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ELTWISE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ELTWISE_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/eltwise_ops.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
enum class EltwiseOpType {
MAX,
SUM,
PRODUCT,
DIV
};
template <class T>
class EltwiseOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
template <class V>
EltwiseOp(csl::Stream stream_, EltwiseOpType op_, std::vector<V> coeffs_)
: stream(std::move(stream_)), op{ op_ }, coeffs(std::begin(coeffs_), std::end(coeffs_))
{
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() >= 2);
CV_Assert(outputs.size() == 1);
CV_Assert(coeffs.size() == 0 || op == EltwiseOpType::SUM);
CV_Assert(coeffs.size() == 0 || inputs.size() == coeffs.size());
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
if (inputs.size() == 2)
{
auto input_wrapper_x = inputs[0].dynamicCast<wrapper_type>();
auto input_x = input_wrapper_x->getView();
auto input_wrapper_y = inputs[1].dynamicCast<wrapper_type>();
auto input_y = input_wrapper_y->getView();
switch (op)
{
case EltwiseOpType::MAX: kernels::eltwise_max_2<T>(stream, output, input_x, input_y); break;
case EltwiseOpType::PRODUCT: kernels::eltwise_prod_2<T>(stream, output, input_x, input_y); break;
case EltwiseOpType::DIV: kernels::eltwise_div_2<T>(stream, output, input_x, input_y); break;
case EltwiseOpType::SUM:
if (coeffs.empty() || (coeffs[0] == 1 && coeffs[1] == 1))
kernels::eltwise_sum_2<T>(stream, output, input_x, input_y);
else
kernels::eltwise_sum_coeff_2<T>(stream, output, coeffs[0], input_x, coeffs[1], input_y);
break;
}
}
else
{
auto input_wrapper_0 = inputs[0].dynamicCast<wrapper_type>();
auto input_0 = input_wrapper_0->getView();
/* we first make a copy and then apply EltwiseOp cumulatively */
csl::tensor_ops::copy(stream, output, input_0);
for (int i = 1; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
switch (op)
{
case EltwiseOpType::MAX: kernels::eltwise_max_2<T>(stream, output, output, input); break;
case EltwiseOpType::PRODUCT: kernels::eltwise_prod_2<T>(stream, output, output, input); break;
case EltwiseOpType::DIV: kernels::eltwise_div_2<T>(stream, output, output, input); break;
case EltwiseOpType::SUM:
if (coeffs.empty() || coeffs[i] == 1)
kernels::eltwise_sum_2<T>(stream, output, output, input);
else
{
/* if this is the first op, we must scale output too */
auto coeff_x = (i == 1) ? coeffs[0] : static_cast<T>(1.0);
kernels::eltwise_sum_coeff_2<T>(stream, output, coeff_x, output, coeffs[i], input);
}
break;
}
}
}
}
private:
csl::Stream stream;
EltwiseOpType op;
std::vector<T> coeffs;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ELTWISE_HPP */