opencv/samples/gpu/driver_api_multi.cpp
2013-06-11 17:58:05 +04:00

162 lines
3.7 KiB
C++

/* This sample demonstrates the way you can perform independed tasks
on the different GPUs */
// Disable some warnings which are caused with CUDA headers
#if defined(_MSC_VER)
#pragma warning(disable: 4201 4408 4100)
#endif
#include <iostream>
#include "cvconfig.h"
#include "opencv2/core/core.hpp"
#include "opencv2/gpu/gpu.hpp"
#ifdef HAVE_TBB
# include "tbb/tbb_stddef.h"
# if TBB_VERSION_MAJOR*100 + TBB_VERSION_MINOR >= 202
# include "tbb/tbb.h"
# include "tbb/task.h"
# undef min
# undef max
# else
# undef HAVE_TBB
# endif
#endif
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB) || defined(__arm__)
int main()
{
#if !defined(HAVE_CUDA)
std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n";
#endif
#if !defined(HAVE_TBB)
std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n";
#endif
#if defined(__arm__)
std::cout << "Unsupported for ARM CUDA library." << std::endl;
#endif
return 0;
}
#else
#include <cuda.h>
#include <cuda_runtime.h>
using namespace std;
using namespace cv;
using namespace cv::gpu;
struct Worker { void operator()(int device_id) const; };
void destroyContexts();
#define safeCall(expr) safeCall_(expr, #expr, __FILE__, __LINE__)
inline void safeCall_(int code, const char* expr, const char* file, int line)
{
if (code != CUDA_SUCCESS)
{
std::cout << "CUDA driver API error: code " << code << ", expr " << expr
<< ", file " << file << ", line " << line << endl;
destroyContexts();
exit(-1);
}
}
// Each GPU is associated with its own context
CUcontext contexts[2];
int main()
{
int num_devices = getCudaEnabledDeviceCount();
if (num_devices < 2)
{
std::cout << "Two or more GPUs are required\n";
return -1;
}
for (int i = 0; i < num_devices; ++i)
{
cv::gpu::printShortCudaDeviceInfo(i);
DeviceInfo dev_info(i);
if (!dev_info.isCompatible())
{
std::cout << "GPU module isn't built for GPU #" << i << " ("
<< dev_info.name() << ", CC " << dev_info.major()
<< dev_info.minor() << "\n";
return -1;
}
}
// Init CUDA Driver API
safeCall(cuInit(0));
// Create context for GPU #0
CUdevice device;
safeCall(cuDeviceGet(&device, 0));
safeCall(cuCtxCreate(&contexts[0], 0, device));
CUcontext prev_context;
safeCall(cuCtxPopCurrent(&prev_context));
// Create context for GPU #1
safeCall(cuDeviceGet(&device, 1));
safeCall(cuCtxCreate(&contexts[1], 0, device));
safeCall(cuCtxPopCurrent(&prev_context));
// Execute calculation in two threads using two GPUs
int devices[] = {0, 1};
tbb::parallel_do(devices, devices + 2, Worker());
destroyContexts();
return 0;
}
void Worker::operator()(int device_id) const
{
// Set the proper context
safeCall(cuCtxPushCurrent(contexts[device_id]));
Mat src(1000, 1000, CV_32F);
Mat dst;
RNG rng(0);
rng.fill(src, RNG::UNIFORM, 0, 1);
// CPU works
cv::transpose(src, dst);
// GPU works
GpuMat d_src(src);
GpuMat d_dst;
gpu::transpose(d_src, d_dst);
// Check results
bool passed = cv::norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
<< (passed ? "passed" : "FAILED") << endl;
// Deallocate data here, otherwise deallocation will be performed
// after context is extracted from the stack
d_src.release();
d_dst.release();
CUcontext prev_context;
safeCall(cuCtxPopCurrent(&prev_context));
}
void destroyContexts()
{
safeCall(cuCtxDestroy(contexts[0]));
safeCall(cuCtxDestroy(contexts[1]));
}
#endif