mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
324 lines
12 KiB
C++
324 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
template <typename T, typename compute>
|
|
class ShapeBaseTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
typedef Point_<T> PointType;
|
|
ShapeBaseTest(int _NSN, int _NP, float _CURRENT_MAX_ACCUR)
|
|
: NSN(_NSN), NP(_NP), CURRENT_MAX_ACCUR(_CURRENT_MAX_ACCUR)
|
|
{
|
|
// generate file list
|
|
vector<string> shapeNames;
|
|
shapeNames.push_back("apple"); //ok
|
|
shapeNames.push_back("children"); // ok
|
|
shapeNames.push_back("device7"); // ok
|
|
shapeNames.push_back("Heart"); // ok
|
|
shapeNames.push_back("teddy"); // ok
|
|
for (vector<string>::const_iterator i = shapeNames.begin(); i != shapeNames.end(); ++i)
|
|
{
|
|
for (int j = 0; j < NSN; ++j)
|
|
{
|
|
stringstream filename;
|
|
filename << cvtest::TS::ptr()->get_data_path()
|
|
<< "shape/mpeg_test/" << *i << "-" << j + 1 << ".png";
|
|
filenames.push_back(filename.str());
|
|
}
|
|
}
|
|
// distance matrix
|
|
const int totalCount = (int)filenames.size();
|
|
distanceMat = Mat::zeros(totalCount, totalCount, CV_32F);
|
|
}
|
|
|
|
protected:
|
|
void run(int)
|
|
{
|
|
mpegTest();
|
|
displayMPEGResults();
|
|
}
|
|
|
|
vector<PointType> convertContourType(const Mat& currentQuery) const
|
|
{
|
|
if (currentQuery.empty()) {
|
|
return vector<PointType>();
|
|
}
|
|
vector<vector<Point> > _contoursQuery;
|
|
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE);
|
|
|
|
vector <PointType> contoursQuery;
|
|
for (size_t border=0; border<_contoursQuery.size(); border++)
|
|
{
|
|
for (size_t p=0; p<_contoursQuery[border].size(); p++)
|
|
{
|
|
contoursQuery.push_back(PointType((T)_contoursQuery[border][p].x,
|
|
(T)_contoursQuery[border][p].y));
|
|
}
|
|
}
|
|
|
|
// In case actual number of points is less than n
|
|
for (int add=(int)contoursQuery.size()-1; add<NP; add++)
|
|
{
|
|
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
|
|
}
|
|
|
|
// Uniformly sampling
|
|
random_shuffle(contoursQuery.begin(), contoursQuery.end());
|
|
int nStart=NP;
|
|
vector<PointType> cont;
|
|
for (int i=0; i<nStart; i++)
|
|
{
|
|
cont.push_back(contoursQuery[i]);
|
|
}
|
|
return cont;
|
|
}
|
|
|
|
void mpegTest()
|
|
{
|
|
// query contours (normal v flipped, h flipped) and testing contour
|
|
vector<PointType> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting;
|
|
// reading query and computing its properties
|
|
for (vector<string>::const_iterator a = filenames.begin(); a != filenames.end(); ++a)
|
|
{
|
|
// read current image
|
|
int aIndex = (int)(a - filenames.begin());
|
|
Mat currentQuery = imread(*a, IMREAD_GRAYSCALE);
|
|
Mat flippedHQuery, flippedVQuery;
|
|
flip(currentQuery, flippedHQuery, 0);
|
|
flip(currentQuery, flippedVQuery, 1);
|
|
// compute border of the query and its flipped versions
|
|
contoursQuery1=convertContourType(currentQuery);
|
|
contoursQuery2=convertContourType(flippedHQuery);
|
|
contoursQuery3=convertContourType(flippedVQuery);
|
|
// compare with all the rest of the images: testing
|
|
for (vector<string>::const_iterator b = filenames.begin(); b != filenames.end(); ++b)
|
|
{
|
|
int bIndex = (int)(b - filenames.begin());
|
|
float distance = 0;
|
|
// skip self-comparisson
|
|
if (a != b)
|
|
{
|
|
// read testing image
|
|
Mat currentTest = imread(*b, IMREAD_GRAYSCALE);
|
|
// compute border of the testing
|
|
contoursTesting=convertContourType(currentTest);
|
|
// compute shape distance
|
|
distance = cmp(contoursQuery1, contoursQuery2,
|
|
contoursQuery3, contoursTesting);
|
|
}
|
|
distanceMat.at<float>(aIndex, bIndex) = distance;
|
|
}
|
|
}
|
|
}
|
|
|
|
void displayMPEGResults()
|
|
{
|
|
const int FIRST_MANY=2*NSN;
|
|
|
|
int corrects=0;
|
|
int divi=0;
|
|
for (int row=0; row<distanceMat.rows; row++)
|
|
{
|
|
if (row%NSN==0) //another group
|
|
{
|
|
divi+=NSN;
|
|
}
|
|
for (int col=divi-NSN; col<divi; col++)
|
|
{
|
|
int nsmall=0;
|
|
for (int i=0; i<distanceMat.cols; i++)
|
|
{
|
|
if (distanceMat.at<float>(row,col) > distanceMat.at<float>(row,i))
|
|
{
|
|
nsmall++;
|
|
}
|
|
}
|
|
if (nsmall<=FIRST_MANY)
|
|
{
|
|
corrects++;
|
|
}
|
|
}
|
|
}
|
|
float porc = 100*float(corrects)/(NSN*distanceMat.rows);
|
|
std::cout << "Test result: " << porc << "%" << std::endl;
|
|
if (porc >= CURRENT_MAX_ACCUR)
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
else
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
|
}
|
|
|
|
protected:
|
|
int NSN;
|
|
int NP;
|
|
float CURRENT_MAX_ACCUR;
|
|
vector<string> filenames;
|
|
Mat distanceMat;
|
|
compute cmp;
|
|
};
|
|
|
|
//------------------------------------------------------------------------
|
|
// Test Shape_SCD.regression
|
|
//------------------------------------------------------------------------
|
|
|
|
class computeShapeDistance_Chi
|
|
{
|
|
Ptr <ShapeContextDistanceExtractor> mysc;
|
|
public:
|
|
computeShapeDistance_Chi()
|
|
{
|
|
const int angularBins=12;
|
|
const int radialBins=4;
|
|
const float minRad=0.2f;
|
|
const float maxRad=2;
|
|
mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad);
|
|
mysc->setIterations(1);
|
|
mysc->setCostExtractor(createChiHistogramCostExtractor(30,0.15f));
|
|
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() );
|
|
}
|
|
float operator()(vector <Point2f>& query1, vector <Point2f>& query2,
|
|
vector <Point2f>& query3, vector <Point2f>& testq)
|
|
{
|
|
return std::min(mysc->computeDistance(query1, testq),
|
|
std::min(mysc->computeDistance(query2, testq),
|
|
mysc->computeDistance(query3, testq)));
|
|
}
|
|
};
|
|
|
|
TEST(Shape_SCD, regression)
|
|
{
|
|
const int NSN_val=5;//10;//20; //number of shapes per class
|
|
const int NP_val=120; //number of points simplifying the contour
|
|
const float CURRENT_MAX_ACCUR_val=95; //99% and 100% reached in several tests, 95 is fixed as minimum boundary
|
|
ShapeBaseTest<float, computeShapeDistance_Chi> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
|
|
test.safe_run();
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// Test ShapeEMD_SCD.regression
|
|
//------------------------------------------------------------------------
|
|
|
|
class computeShapeDistance_EMD
|
|
{
|
|
Ptr <ShapeContextDistanceExtractor> mysc;
|
|
public:
|
|
computeShapeDistance_EMD()
|
|
{
|
|
const int angularBins=12;
|
|
const int radialBins=4;
|
|
const float minRad=0.2f;
|
|
const float maxRad=2;
|
|
mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad);
|
|
mysc->setIterations(1);
|
|
mysc->setCostExtractor( createEMDL1HistogramCostExtractor() );
|
|
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() );
|
|
}
|
|
float operator()(vector <Point2f>& query1, vector <Point2f>& query2,
|
|
vector <Point2f>& query3, vector <Point2f>& testq)
|
|
{
|
|
return std::min(mysc->computeDistance(query1, testq),
|
|
std::min(mysc->computeDistance(query2, testq),
|
|
mysc->computeDistance(query3, testq)));
|
|
}
|
|
};
|
|
|
|
TEST(ShapeEMD_SCD, regression)
|
|
{
|
|
const int NSN_val=5;//10;//20; //number of shapes per class
|
|
const int NP_val=100; //number of points simplifying the contour
|
|
const float CURRENT_MAX_ACCUR_val=95; //98% and 99% reached in several tests, 95 is fixed as minimum boundary
|
|
ShapeBaseTest<float, computeShapeDistance_EMD> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
|
|
test.safe_run();
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// Test Hauss.regression
|
|
//------------------------------------------------------------------------
|
|
|
|
class computeShapeDistance_Haussdorf
|
|
{
|
|
Ptr <HausdorffDistanceExtractor> haus;
|
|
public:
|
|
computeShapeDistance_Haussdorf()
|
|
{
|
|
haus = createHausdorffDistanceExtractor();
|
|
}
|
|
float operator()(vector<Point> &query1, vector<Point> &query2,
|
|
vector<Point> &query3, vector<Point> &testq)
|
|
{
|
|
return std::min(haus->computeDistance(query1,testq),
|
|
std::min(haus->computeDistance(query2,testq),
|
|
haus->computeDistance(query3,testq)));
|
|
}
|
|
};
|
|
|
|
TEST(Hauss, regression)
|
|
{
|
|
const int NSN_val=5;//10;//20; //number of shapes per class
|
|
const int NP_val = 180; //number of points simplifying the contour
|
|
const float CURRENT_MAX_ACCUR_val=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary
|
|
ShapeBaseTest<int, computeShapeDistance_Haussdorf> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(computeDistance, regression_4976)
|
|
{
|
|
Mat a = imread(cvtest::findDataFile("shape/samples/1.png"), 0);
|
|
Mat b = imread(cvtest::findDataFile("shape/samples/2.png"), 0);
|
|
|
|
vector<vector<Point> > ca,cb;
|
|
findContours(a, ca, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
|
|
findContours(b, cb, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
|
|
|
|
Ptr<HausdorffDistanceExtractor> hd = createHausdorffDistanceExtractor();
|
|
Ptr<ShapeContextDistanceExtractor> sd = createShapeContextDistanceExtractor();
|
|
|
|
double d1 = hd->computeDistance(ca[0],cb[0]);
|
|
double d2 = sd->computeDistance(ca[0],cb[0]);
|
|
|
|
EXPECT_NEAR(d1, 26.4196891785, 1e-3) << "HausdorffDistanceExtractor";
|
|
EXPECT_NEAR(d2, 0.25804194808, 1e-3) << "ShapeContextDistanceExtractor";
|
|
}
|