mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 20:20:20 +08:00
273 lines
7.7 KiB
C++
273 lines
7.7 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_core.hpp"
|
|
|
|
#include "merge.simd.hpp"
|
|
#include "merge.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
|
|
|
|
namespace cv { namespace hal {
|
|
|
|
void merge8u(const uchar** src, uchar* dst, int len, int cn )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn)
|
|
CV_CPU_DISPATCH(merge8u, (src, dst, len, cn),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
void merge16u(const ushort** src, ushort* dst, int len, int cn )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn)
|
|
CV_CPU_DISPATCH(merge16u, (src, dst, len, cn),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
void merge32s(const int** src, int* dst, int len, int cn )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn)
|
|
CV_CPU_DISPATCH(merge32s, (src, dst, len, cn),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
void merge64s(const int64** src, int64* dst, int len, int cn )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn)
|
|
CV_CPU_DISPATCH(merge64s, (src, dst, len, cn),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
} // namespace cv::hal::
|
|
|
|
|
|
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);
|
|
|
|
static MergeFunc getMergeFunc(int depth)
|
|
{
|
|
static MergeFunc mergeTab[] =
|
|
{
|
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u),
|
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u),
|
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s),
|
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u)
|
|
};
|
|
|
|
return mergeTab[depth];
|
|
}
|
|
|
|
#ifdef HAVE_IPP
|
|
|
|
static bool ipp_merge(const Mat* mv, Mat& dst, int channels)
|
|
{
|
|
#ifdef HAVE_IPP_IW_LL
|
|
CV_INSTRUMENT_REGION_IPP();
|
|
|
|
if(channels != 3 && channels != 4)
|
|
return false;
|
|
|
|
if(mv[0].dims <= 2)
|
|
{
|
|
IppiSize size = ippiSize(mv[0].size());
|
|
const void *srcPtrs[4] = {NULL};
|
|
size_t srcStep = mv[0].step;
|
|
for(int i = 0; i < channels; i++)
|
|
{
|
|
srcPtrs[i] = mv[i].ptr();
|
|
if(srcStep != mv[i].step)
|
|
return false;
|
|
}
|
|
|
|
return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0;
|
|
}
|
|
else
|
|
{
|
|
const Mat *arrays[5] = {NULL};
|
|
uchar *ptrs[5] = {NULL};
|
|
arrays[0] = &dst;
|
|
|
|
for(int i = 1; i < channels; i++)
|
|
{
|
|
arrays[i] = &mv[i-1];
|
|
}
|
|
|
|
NAryMatIterator it(arrays, ptrs);
|
|
IppiSize size = { (int)it.size, 1 };
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#else
|
|
CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels);
|
|
return false;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void merge(const Mat* mv, size_t n, OutputArray _dst)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_Assert( mv && n > 0 );
|
|
|
|
int depth = mv[0].depth();
|
|
bool allch1 = true;
|
|
int k, cn = 0;
|
|
size_t i;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth);
|
|
allch1 = allch1 && mv[i].channels() == 1;
|
|
cn += mv[i].channels();
|
|
}
|
|
|
|
CV_Assert( 0 < cn && cn <= CV_CN_MAX );
|
|
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn));
|
|
Mat dst = _dst.getMat();
|
|
|
|
if( n == 1 )
|
|
{
|
|
mv[0].copyTo(dst);
|
|
return;
|
|
}
|
|
|
|
CV_IPP_RUN(allch1, ipp_merge(mv, dst, (int)n));
|
|
|
|
if( !allch1 )
|
|
{
|
|
AutoBuffer<int> pairs(cn*2);
|
|
int j, ni=0;
|
|
|
|
for( i = 0, j = 0; i < n; i++, j += ni )
|
|
{
|
|
ni = mv[i].channels();
|
|
for( k = 0; k < ni; k++ )
|
|
{
|
|
pairs[(j+k)*2] = j + k;
|
|
pairs[(j+k)*2+1] = j + k;
|
|
}
|
|
}
|
|
mixChannels( mv, n, &dst, 1, &pairs[0], cn );
|
|
return;
|
|
}
|
|
|
|
MergeFunc func = getMergeFunc(depth);
|
|
CV_Assert( func != 0 );
|
|
|
|
size_t esz = dst.elemSize(), esz1 = dst.elemSize1();
|
|
size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz);
|
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
|
|
const Mat** arrays = (const Mat**)_buf.data();
|
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
|
|
|
|
arrays[0] = &dst;
|
|
for( k = 0; k < cn; k++ )
|
|
arrays[k+1] = &mv[k];
|
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1);
|
|
size_t total = (int)it.size;
|
|
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0));
|
|
|
|
for( i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
for( size_t j = 0; j < total; j += blocksize )
|
|
{
|
|
size_t bsz = std::min(total - j, blocksize);
|
|
func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn );
|
|
|
|
if( j + blocksize < total )
|
|
{
|
|
ptrs[0] += bsz*esz;
|
|
for( int t = 0; t < cn; t++ )
|
|
ptrs[t+1] += bsz*esz1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst )
|
|
{
|
|
std::vector<UMat> src, ksrc;
|
|
_mv.getUMatVector(src);
|
|
CV_Assert(!src.empty());
|
|
|
|
int type = src[0].type(), depth = CV_MAT_DEPTH(type),
|
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
|
|
Size size = src[0].size();
|
|
|
|
for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i)
|
|
{
|
|
int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype),
|
|
esz1 = CV_ELEM_SIZE1(idepth);
|
|
if (src[i].dims > 2)
|
|
return false;
|
|
|
|
CV_Assert(size == src[i].size() && depth == idepth);
|
|
|
|
for (int cn = 0; cn < icn; ++cn)
|
|
{
|
|
UMat tsrc = src[i];
|
|
tsrc.offset += cn * esz1;
|
|
ksrc.push_back(tsrc);
|
|
}
|
|
}
|
|
int dcn = (int)ksrc.size();
|
|
|
|
String srcargs, processelem, cndecl, indexdecl;
|
|
for (int i = 0; i < dcn; ++i)
|
|
{
|
|
srcargs += format("DECLARE_SRC_PARAM(%d)", i);
|
|
processelem += format("PROCESS_ELEM(%d)", i);
|
|
indexdecl += format("DECLARE_INDEX(%d)", i);
|
|
cndecl += format(" -D scn%d=%d", i, ksrc[i].channels());
|
|
}
|
|
|
|
ocl::Kernel k("merge", ocl::core::split_merge_oclsrc,
|
|
format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s"
|
|
" -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s",
|
|
dcn, ocl::memopTypeToStr(depth), srcargs.c_str(),
|
|
indexdecl.c_str(), processelem.c_str(), cndecl.c_str()));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
_dst.create(size, CV_MAKE_TYPE(depth, dcn));
|
|
UMat dst = _dst.getUMat();
|
|
|
|
int argidx = 0;
|
|
for (int i = 0; i < dcn; ++i)
|
|
argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i]));
|
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst));
|
|
k.set(argidx, rowsPerWI);
|
|
|
|
size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
void merge(InputArrayOfArrays _mv, OutputArray _dst)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(),
|
|
ocl_merge(_mv, _dst))
|
|
|
|
std::vector<Mat> mv;
|
|
_mv.getMatVector(mv);
|
|
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst);
|
|
}
|
|
|
|
} // namespace
|