opencv/modules/dnn/src/layers/batch_norm_layer.cpp
Li Peng 2493083935 mvn, batch_norm and relu layer fusion
Signed-off-by: Li Peng <peng.li@intel.com>
2018-01-25 18:57:05 +08:00

279 lines
9.4 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of Batch Normalization layer.
*/
#include "../precomp.hpp"
#include "op_halide.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "opencl_kernels_dnn.hpp"
namespace cv
{
namespace dnn
{
class BatchNormLayerImpl : public BatchNormLayer
{
public:
Mat weights_, bias_;
UMat umat_weight, umat_bias;
BatchNormLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
CV_Assert(blobs.size() >= 3);
hasWeights = params.get<bool>("has_weight", false);
hasBias = params.get<bool>("has_bias", false);
epsilon = params.get<float>("eps", 1E-5);
size_t n = blobs[0].total();
CV_Assert(blobs[1].total() == n &&
blobs[0].isContinuous() && blobs[1].isContinuous() &&
blobs[0].type() == CV_32F && blobs[1].type() == CV_32F);
float varMeanScale = 1.f;
if (!hasWeights && !hasBias) {
CV_Assert(blobs[2].type() == CV_32F);
varMeanScale = blobs[2].at<float>(0);
if (varMeanScale != 0)
varMeanScale = 1/varMeanScale;
}
const int weightsBlobIndex = 2;
const int biasBlobIndex = weightsBlobIndex + hasWeights;
if( hasWeights )
{
CV_Assert((size_t)weightsBlobIndex < blobs.size());
const Mat& w = blobs[weightsBlobIndex];
CV_Assert(w.isContinuous() && w.type() == CV_32F && w.total() == (size_t)n);
}
if( hasBias )
{
CV_Assert((size_t)biasBlobIndex < blobs.size());
const Mat& b = blobs[weightsBlobIndex];
CV_Assert(b.isContinuous() && b.type() == CV_32F && b.total() == (size_t)n);
}
const float* meanData = blobs[0].ptr<float>();
const float* stdData = blobs[1].ptr<float>();
const float* weightsData = hasWeights ? blobs[weightsBlobIndex].ptr<float>() : 0;
const float* biasData = hasBias ? blobs[biasBlobIndex].ptr<float>() : 0;
weights_.create(1, (int)n, CV_32F);
bias_.create(1, (int)n, CV_32F);
float* dstWeightsData = weights_.ptr<float>();
float* dstBiasData = bias_.ptr<float>();
for (size_t i = 0; i < n; ++i)
{
float w = (hasWeights ? weightsData[i] : 1.0f) / sqrt(stdData[i] * varMeanScale + epsilon);
dstWeightsData[i] = w;
dstBiasData[i] = (hasBias ? biasData[i] : 0.0f) - w * meanData[i] * varMeanScale;
}
}
void getScaleShift(Mat& scale, Mat& shift) const
{
scale = weights_;
shift = bias_;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
return true;
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide();
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
CV_Assert(blobs.size() >= 2);
CV_Assert(inputs.size() == 1);
if (umat_weight.empty())
{
umat_weight = weights_.getUMat(ACCESS_READ);
umat_bias = bias_.getUMat(ACCESS_READ);
}
UMat &inpBlob = inputs[0];
CV_Assert(inpBlob.dims == 2 || inpBlob.dims == 4);
int groups = inpBlob.size[0];
int channels = inpBlob.size[1];
int rows = inpBlob.dims > 2 ? inpBlob.size[2] : 1;
int cols = inpBlob.dims > 2 ? inpBlob.size[3] : 1;
for (size_t ii = 0; ii < outputs.size(); ii++)
{
if (inpBlob.dims == 2)
{
UMat& src = inputs[ii];
UMat& dst = outputs[ii];
multiply(src, weights_, dst);
add(dst, bias_, dst);
}
else
{
MatShape s = shape(groups * channels, rows * cols);
UMat src = inputs[ii].reshape(1, s.size(), &s[0]);
UMat dst = outputs[ii].reshape(1, s.size(), &s[0]);
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
String buildopt = format("-DNUM=%d ", number);
String kname = format("batch_norm%d", number);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::batchnorm_oclsrc, buildopt);
if (kernel.empty())
return false;
size_t global[] = { (size_t)s[0], (size_t)(s[1] / number) };
kernel.set(0, ocl::KernelArg::PtrReadOnly(src));
kernel.set(1, (int)s[0]);
kernel.set(2, (int)s[1]);
kernel.set(3, (int)channels);
kernel.set(4, ocl::KernelArg::PtrReadOnly(umat_weight));
kernel.set(5, ocl::KernelArg::PtrReadOnly(umat_bias));
kernel.set(6, ocl::KernelArg::PtrWriteOnly(dst));
bool ret = kernel.run(2, global, NULL, false);
if (!ret)
return false;
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(blobs.size() >= 2);
CV_Assert(inputs.size() == 1);
Mat &inpBlob = *inputs[0];
CV_Assert(inpBlob.dims == 2 || inpBlob.dims == 4);
int rows = inpBlob.dims > 2 ? inpBlob.size[2] : 1;
int cols = inpBlob.dims > 2 ? inpBlob.size[3] : 1;
for (size_t ii = 0; ii < outputs.size(); ii++)
{
Mat &outBlob = outputs[ii];
for(int num = 0; num < outBlob.size[0]; num++)
{
for (int n = 0; n < outBlob.size[1]; n++)
{
float w = weights_.at<float>(n);
float b = bias_.at<float>(n);
Mat inpBlobPlane(rows, cols, CV_32F, inpBlob.ptr<float>(num, n));
Mat outBlobPlane(rows, cols, CV_32F, outBlob.ptr<float>(num, n));
inpBlobPlane.convertTo(outBlobPlane, CV_32F, w, b);
}
}
}
}
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
{
switch (node->backendId)
{
case DNN_BACKEND_HALIDE:
{
#ifdef HAVE_HALIDE
auto base = node.dynamicCast<HalideBackendNode>();
Halide::Func& input = base->funcs.back();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif // HAVE_HALIDE
break;
}
}
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> input = halideBuffer(inputs[0]);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_HALIDE
// attachHalide can work both with Halide::Buffer and Halide::Func. In the
// second case it will be a fusion.
Halide::Func attachHalide(const Halide::Expr& input)
{
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Var x("x"), y("y"), c("c"), n("n");
const int numChannels = weights_.total();
auto weights = wrapToHalideBuffer(weights_, {numChannels});
auto bias = wrapToHalideBuffer(bias_, {numChannels});
top(x, y, c, n) = input * weights(c) + bias(c);
return top;
}
#endif // HAVE_HALIDE
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
(void)outputs; // suppress unused variable warning
int64 flops = 0;
for(int i = 0; i < inputs.size(); i++)
{
flops += 3*total(inputs[i]);
}
return flops;
}
};
Ptr<BatchNormLayer> BatchNormLayer::create(const LayerParams& params)
{
return Ptr<BatchNormLayer>(new BatchNormLayerImpl(params));
}
} // namespace dnn
} // namespace cv