mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
240 lines
9.1 KiB
Python
240 lines
9.1 KiB
Python
'''
|
|
Text detection model: https://github.com/argman/EAST
|
|
Download link: https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1
|
|
|
|
CRNN Text recognition model taken from here: https://github.com/meijieru/crnn.pytorch
|
|
How to convert from pb to onnx:
|
|
Using classes from here: https://github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py
|
|
|
|
More converted onnx text recognition models can be downloaded directly here:
|
|
Download link: https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing
|
|
And these models taken from here:https://github.com/clovaai/deep-text-recognition-benchmark
|
|
|
|
import torch
|
|
from models.crnn import CRNN
|
|
|
|
model = CRNN(32, 1, 37, 256)
|
|
model.load_state_dict(torch.load('crnn.pth'))
|
|
dummy_input = torch.randn(1, 1, 32, 100)
|
|
torch.onnx.export(model, dummy_input, "crnn.onnx", verbose=True)
|
|
'''
|
|
|
|
|
|
# Import required modules
|
|
import numpy as np
|
|
import cv2 as cv
|
|
import math
|
|
import argparse
|
|
|
|
############ Add argument parser for command line arguments ############
|
|
parser = argparse.ArgumentParser(
|
|
description="Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of "
|
|
"EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)"
|
|
"The OCR model can be obtained from converting the pretrained CRNN model to .onnx format from the github repository https://github.com/meijieru/crnn.pytorch"
|
|
"Or you can download trained OCR model directly from https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing")
|
|
parser.add_argument('--input',
|
|
help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
|
parser.add_argument('--model', '-m', required=True,
|
|
help='Path to a binary .pb file contains trained detector network.')
|
|
parser.add_argument('--ocr', default="crnn.onnx",
|
|
help="Path to a binary .pb or .onnx file contains trained recognition network", )
|
|
parser.add_argument('--width', type=int, default=320,
|
|
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.')
|
|
parser.add_argument('--height', type=int, default=320,
|
|
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.')
|
|
parser.add_argument('--thr', type=float, default=0.5,
|
|
help='Confidence threshold.')
|
|
parser.add_argument('--nms', type=float, default=0.4,
|
|
help='Non-maximum suppression threshold.')
|
|
args = parser.parse_args()
|
|
|
|
|
|
############ Utility functions ############
|
|
|
|
def fourPointsTransform(frame, vertices):
|
|
vertices = np.asarray(vertices)
|
|
outputSize = (100, 32)
|
|
targetVertices = np.array([
|
|
[0, outputSize[1] - 1],
|
|
[0, 0],
|
|
[outputSize[0] - 1, 0],
|
|
[outputSize[0] - 1, outputSize[1] - 1]], dtype="float32")
|
|
|
|
rotationMatrix = cv.getPerspectiveTransform(vertices, targetVertices)
|
|
result = cv.warpPerspective(frame, rotationMatrix, outputSize)
|
|
return result
|
|
|
|
|
|
def decodeText(scores):
|
|
text = ""
|
|
alphabet = "0123456789abcdefghijklmnopqrstuvwxyz"
|
|
for i in range(scores.shape[0]):
|
|
c = np.argmax(scores[i][0])
|
|
if c != 0:
|
|
text += alphabet[c - 1]
|
|
else:
|
|
text += '-'
|
|
|
|
# adjacent same letters as well as background text must be removed to get the final output
|
|
char_list = []
|
|
for i in range(len(text)):
|
|
if text[i] != '-' and (not (i > 0 and text[i] == text[i - 1])):
|
|
char_list.append(text[i])
|
|
return ''.join(char_list)
|
|
|
|
|
|
def decodeBoundingBoxes(scores, geometry, scoreThresh):
|
|
detections = []
|
|
confidences = []
|
|
|
|
############ CHECK DIMENSIONS AND SHAPES OF geometry AND scores ############
|
|
assert len(scores.shape) == 4, "Incorrect dimensions of scores"
|
|
assert len(geometry.shape) == 4, "Incorrect dimensions of geometry"
|
|
assert scores.shape[0] == 1, "Invalid dimensions of scores"
|
|
assert geometry.shape[0] == 1, "Invalid dimensions of geometry"
|
|
assert scores.shape[1] == 1, "Invalid dimensions of scores"
|
|
assert geometry.shape[1] == 5, "Invalid dimensions of geometry"
|
|
assert scores.shape[2] == geometry.shape[2], "Invalid dimensions of scores and geometry"
|
|
assert scores.shape[3] == geometry.shape[3], "Invalid dimensions of scores and geometry"
|
|
height = scores.shape[2]
|
|
width = scores.shape[3]
|
|
for y in range(0, height):
|
|
|
|
# Extract data from scores
|
|
scoresData = scores[0][0][y]
|
|
x0_data = geometry[0][0][y]
|
|
x1_data = geometry[0][1][y]
|
|
x2_data = geometry[0][2][y]
|
|
x3_data = geometry[0][3][y]
|
|
anglesData = geometry[0][4][y]
|
|
for x in range(0, width):
|
|
score = scoresData[x]
|
|
|
|
# If score is lower than threshold score, move to next x
|
|
if (score < scoreThresh):
|
|
continue
|
|
|
|
# Calculate offset
|
|
offsetX = x * 4.0
|
|
offsetY = y * 4.0
|
|
angle = anglesData[x]
|
|
|
|
# Calculate cos and sin of angle
|
|
cosA = math.cos(angle)
|
|
sinA = math.sin(angle)
|
|
h = x0_data[x] + x2_data[x]
|
|
w = x1_data[x] + x3_data[x]
|
|
|
|
# Calculate offset
|
|
offset = ([offsetX + cosA * x1_data[x] + sinA * x2_data[x], offsetY - sinA * x1_data[x] + cosA * x2_data[x]])
|
|
|
|
# Find points for rectangle
|
|
p1 = (-sinA * h + offset[0], -cosA * h + offset[1])
|
|
p3 = (-cosA * w + offset[0], sinA * w + offset[1])
|
|
center = (0.5 * (p1[0] + p3[0]), 0.5 * (p1[1] + p3[1]))
|
|
detections.append((center, (w, h), -1 * angle * 180.0 / math.pi))
|
|
confidences.append(float(score))
|
|
|
|
# Return detections and confidences
|
|
return [detections, confidences]
|
|
|
|
|
|
def main():
|
|
# Read and store arguments
|
|
confThreshold = args.thr
|
|
nmsThreshold = args.nms
|
|
inpWidth = args.width
|
|
inpHeight = args.height
|
|
modelDetector = args.model
|
|
modelRecognition = args.ocr
|
|
|
|
# Load network
|
|
detector = cv.dnn.readNet(modelDetector)
|
|
recognizer = cv.dnn.readNet(modelRecognition)
|
|
|
|
# Create a new named window
|
|
kWinName = "EAST: An Efficient and Accurate Scene Text Detector"
|
|
cv.namedWindow(kWinName, cv.WINDOW_NORMAL)
|
|
outNames = []
|
|
outNames.append("feature_fusion/Conv_7/Sigmoid")
|
|
outNames.append("feature_fusion/concat_3")
|
|
|
|
# Open a video file or an image file or a camera stream
|
|
cap = cv.VideoCapture(args.input if args.input else 0)
|
|
|
|
tickmeter = cv.TickMeter()
|
|
while cv.waitKey(1) < 0:
|
|
# Read frame
|
|
hasFrame, frame = cap.read()
|
|
if not hasFrame:
|
|
cv.waitKey()
|
|
break
|
|
|
|
# Get frame height and width
|
|
height_ = frame.shape[0]
|
|
width_ = frame.shape[1]
|
|
rW = width_ / float(inpWidth)
|
|
rH = height_ / float(inpHeight)
|
|
|
|
# Create a 4D blob from frame.
|
|
blob = cv.dnn.blobFromImage(frame, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False)
|
|
|
|
# Run the detection model
|
|
detector.setInput(blob)
|
|
|
|
tickmeter.start()
|
|
outs = detector.forward(outNames)
|
|
tickmeter.stop()
|
|
|
|
# Get scores and geometry
|
|
scores = outs[0]
|
|
geometry = outs[1]
|
|
[boxes, confidences] = decodeBoundingBoxes(scores, geometry, confThreshold)
|
|
|
|
# Apply NMS
|
|
indices = cv.dnn.NMSBoxesRotated(boxes, confidences, confThreshold, nmsThreshold)
|
|
for i in indices:
|
|
# get 4 corners of the rotated rect
|
|
vertices = cv.boxPoints(boxes[i[0]])
|
|
# scale the bounding box coordinates based on the respective ratios
|
|
for j in range(4):
|
|
vertices[j][0] *= rW
|
|
vertices[j][1] *= rH
|
|
|
|
|
|
# get cropped image using perspective transform
|
|
if modelRecognition:
|
|
cropped = fourPointsTransform(frame, vertices)
|
|
cropped = cv.cvtColor(cropped, cv.COLOR_BGR2GRAY)
|
|
|
|
# Create a 4D blob from cropped image
|
|
blob = cv.dnn.blobFromImage(cropped, size=(100, 32), mean=127.5, scalefactor=1 / 127.5)
|
|
recognizer.setInput(blob)
|
|
|
|
# Run the recognition model
|
|
tickmeter.start()
|
|
result = recognizer.forward()
|
|
tickmeter.stop()
|
|
|
|
# decode the result into text
|
|
wordRecognized = decodeText(result)
|
|
cv.putText(frame, wordRecognized, (int(vertices[1][0]), int(vertices[1][1])), cv.FONT_HERSHEY_SIMPLEX,
|
|
0.5, (255, 0, 0))
|
|
|
|
for j in range(4):
|
|
p1 = (int(vertices[j][0]), int(vertices[j][1]))
|
|
p2 = (int(vertices[(j + 1) % 4][0]), int(vertices[(j + 1) % 4][1]))
|
|
cv.line(frame, p1, p2, (0, 255, 0), 1)
|
|
|
|
# Put efficiency information
|
|
label = 'Inference time: %.2f ms' % (tickmeter.getTimeMilli())
|
|
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
|
|
|
# Display the frame
|
|
cv.imshow(kWinName, frame)
|
|
tickmeter.reset()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|