opencv/samples/dnn/edge_detection.py
Gursimar Singh f8fb3a7f55
Merge pull request #25515 from gursimarsingh:improved_edge_detection_sample
#25006 #25314 
This pull request removes hed_pretrained caffe model to the SOTA dexined onnx model for edge detection. Usage of conventional methods like canny has also been added

The obsolete cpp and python sample has been removed

TODO:
- [  ]  Remove temporary hack for quantized models. Refer issue https://github.com/opencv/opencv_zoo/issues/273

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-09-06 12:47:04 +03:00

177 lines
7.5 KiB
Python

'''
This sample demonstrates edge detection with dexined and canny edge detection techniques.
For switching between deep learning based model(dexined) and canny edge detector, press space bar in case of video. In case of image, pass the argument --method for switching between dexined and canny.
'''
import cv2 as cv
import argparse
import numpy as np
from common import *
def get_args_parser(func_args):
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.', default=0, required=False)
parser.add_argument('--method', help='choose method: dexined or canny', default='canny', required=False)
parser.add_argument('--backend', default="default", type=str, choices=backends,
help="Choose one of computation backends: "
"default: automatically (by default), "
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"opencv: OpenCV implementation, "
"vkcom: VKCOM, "
"cuda: CUDA, "
"webnn: WebNN")
parser.add_argument('--target', default="cpu", type=str, choices=targets,
help="Choose one of target computation devices: "
"cpu: CPU target (by default), "
"opencl: OpenCL, "
"opencl_fp16: OpenCL fp16 (half-float precision), "
"ncs2_vpu: NCS2 VPU, "
"hddl_vpu: HDDL VPU, "
"vulkan: Vulkan, "
"cuda: CUDA, "
"cuda_fp16: CUDA fp16 (half-float preprocess)")
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'edge_detection', 'dexined')
parser = argparse.ArgumentParser(parents=[parser],
description='''
To run:
Canny:
python edge_detection.py --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
Dexined:
python edge_detection.py dexined --input=path/to/your/input/image/or/video
"In case of video input, for switching between deep learning based model (Dexined) and Canny edge detector, press space bar. Pass as argument in case of image input."
Model path can also be specified using --model argument
''', formatter_class=argparse.RawTextHelpFormatter)
return parser.parse_args(func_args)
threshold1 = 0
threshold2 = 50
blur_amount = 5
gray = None
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
def post_processing(output, shape):
h, w = shape
preds = []
for p in output:
img = sigmoid(p)
img = np.squeeze(img)
img = cv.normalize(img, None, 0, 255, cv.NORM_MINMAX, cv.CV_8U)
img = cv.resize(img, (w, h))
preds.append(img)
fuse = preds[-1]
ave = np.array(preds, dtype=np.float32)
ave = np.uint8(np.mean(ave, axis=0))
return fuse, ave
def apply_canny(image):
global threshold1, threshold2, blur_amount
kernel_size = 2 * blur_amount + 1
blurred = cv.GaussianBlur(image, (kernel_size, kernel_size), 0)
result = cv.Canny(blurred, threshold1, threshold2)
cv.imshow('Output', result)
def setupCannyWindow(image):
global gray
cv.destroyWindow('Output')
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
cv.moveWindow('Output', 200, 50)
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
cv.createTrackbar('thrs1', 'Output', threshold1, 255, lambda value: [globals().__setitem__('threshold1', value), apply_canny(gray)])
cv.createTrackbar('thrs2', 'Output', threshold2, 255, lambda value: [globals().__setitem__('threshold2', value), apply_canny(gray)])
cv.createTrackbar('blur', 'Output', blur_amount, 20, lambda value: [globals().__setitem__('blur_amount', value), apply_canny(gray)])
def loadModel(args):
net = cv.dnn.readNetFromONNX(args.model)
net.setPreferableBackend(get_backend_id(args.backend))
net.setPreferableTarget(get_target_id(args.target))
return net
def apply_dexined(model, image):
out = model.forward()
result,_ = post_processing(out, image.shape[:2])
t, _ = model.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(image, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
cv.putText(result, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
cv.imshow("Output", result)
def main(func_args=None):
args = get_args_parser(func_args)
cap = cv.VideoCapture(cv.samples.findFile(args.input) if args.input else 0)
if not cap.isOpened():
print("Failed to open the input video")
exit(-1)
cv.namedWindow('Input', cv.WINDOW_AUTOSIZE)
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
cv.moveWindow('Output', 200, 50)
method = args.method
if os.getenv('OPENCV_SAMPLES_DATA_PATH') is not None or hasattr(args, 'model'):
try:
args.model = findModel(args.model, args.sha1)
method = 'dexined'
except:
print("[WARN] Model file not provided, using canny instead. Pass model using --model=/path/to/dexined.onnx to use dexined model.")
method = 'canny'
args.model = None
else:
print("[WARN] Model file not provided, using canny instead. Pass model using --model=/path/to/dexined.onnx to use dexined model.")
method = 'canny'
if method == 'canny':
dummy = np.zeros((512, 512, 3), dtype="uint8")
setupCannyWindow(dummy)
net = None
if method == "dexined":
net = loadModel(args)
while cv.waitKey(1) < 0:
hasFrame, image = cap.read()
if not hasFrame:
print("Press any key to exit")
cv.waitKey(0)
break
if method == "canny":
global gray
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
apply_canny(gray)
elif method == "dexined":
inp = cv.dnn.blobFromImage(image, args.scale, (args.width, args.height), args.mean, swapRB=args.rgb, crop=False)
net.setInput(inp)
apply_dexined(net, image)
cv.imshow("Input", image)
key = cv.waitKey(30)
if key == ord(' ') and method == 'canny':
if hasattr(args, 'model') and args.model is not None:
print("model: ", args.model)
method = "dexined"
if net is None:
net = loadModel(args)
cv.destroyWindow('Output')
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
cv.moveWindow('Output', 200, 50)
else:
print("[ERROR] Provide model file using --model to use dexined. Download model using python download_models.py dexined from dnn samples directory")
elif key == ord(' ') and method=='dexined':
method = "canny"
setupCannyWindow(image)
elif key == 27 or key == ord('q'):
break
cv.destroyAllWindows()
if __name__ == '__main__':
main()