opencv/modules/features2d/perf/perf_batchDistance.cpp
Alexander Alekhin 4a297a2443 ts: refactor OpenCV tests
- removed tr1 usage (dropped in C++17)
- moved includes of vector/map/iostream/limits into ts.hpp
- require opencv_test + anonymous namespace (added compile check)
- fixed norm() usage (must be from cvtest::norm for checks) and other conflict functions
- added missing license headers
2018-02-03 19:39:47 +00:00

168 lines
5.1 KiB
C++

#include "perf_precomp.hpp"
namespace opencv_test
{
using namespace perf;
CV_ENUM(NormType, NORM_L1, NORM_L2, NORM_L2SQR, NORM_HAMMING, NORM_HAMMING2)
typedef tuple<NormType, MatType, bool> Norm_Destination_CrossCheck_t;
typedef perf::TestBaseWithParam<Norm_Destination_CrossCheck_t> Norm_Destination_CrossCheck;
typedef tuple<NormType, bool> Norm_CrossCheck_t;
typedef perf::TestBaseWithParam<Norm_CrossCheck_t> Norm_CrossCheck;
typedef tuple<MatType, bool> Source_CrossCheck_t;
typedef perf::TestBaseWithParam<Source_CrossCheck_t> Source_CrossCheck;
void generateData( Mat& query, Mat& train, const int sourceType );
PERF_TEST_P(Norm_Destination_CrossCheck, batchDistance_8U,
testing::Combine(testing::Values((int)NORM_L1, (int)NORM_L2SQR),
testing::Values(CV_32S, CV_32F),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
int destinationType = get<1>(GetParam());
bool isCrossCheck = get<2>(GetParam());
int knn = isCrossCheck ? 1 : 0;
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
generateData(queryDescriptors, trainDescriptors, CV_8U);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, destinationType, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
SANITY_CHECK(dist);
if (isCrossCheck) SANITY_CHECK(ndix);
}
PERF_TEST_P(Norm_CrossCheck, batchDistance_Dest_32S,
testing::Combine(testing::Values((int)NORM_HAMMING, (int)NORM_HAMMING2),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
int knn = isCrossCheck ? 1 : 0;
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
generateData(queryDescriptors, trainDescriptors, CV_8U);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32S, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
SANITY_CHECK(dist);
if (isCrossCheck) SANITY_CHECK(ndix);
}
PERF_TEST_P(Source_CrossCheck, batchDistance_L2,
testing::Combine(testing::Values(CV_8U, CV_32F),
testing::Bool()
)
)
{
int sourceType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
int knn = isCrossCheck ? 1 : 0;
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
generateData(queryDescriptors, trainDescriptors, sourceType);
declare.time(50);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32F, (isCrossCheck) ? ndix : noArray(),
NORM_L2, knn, Mat(), 0, isCrossCheck);
}
SANITY_CHECK(dist);
if (isCrossCheck) SANITY_CHECK(ndix);
}
PERF_TEST_P(Norm_CrossCheck, batchDistance_32F,
testing::Combine(testing::Values((int)NORM_L1, (int)NORM_L2SQR),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
int knn = isCrossCheck ? 1 : 0;
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
generateData(queryDescriptors, trainDescriptors, CV_32F);
declare.time(100);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32F, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
SANITY_CHECK(dist, 1e-4);
if (isCrossCheck) SANITY_CHECK(ndix);
}
void generateData( Mat& query, Mat& train, const int sourceType )
{
const int dim = 500;
const int queryDescCount = 300; // must be even number because we split train data in some cases in two
const int countFactor = 4; // do not change it
RNG& rng = theRNG();
// Generate query descriptors randomly.
// Descriptor vector elements are integer values.
Mat buf( queryDescCount, dim, CV_32SC1 );
rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
buf.convertTo( query, sourceType );
// Generate train decriptors as follows:
// copy each query descriptor to train set countFactor times
// and perturb some one element of the copied descriptors in
// in ascending order. General boundaries of the perturbation
// are (0.f, 1.f).
train.create( query.rows*countFactor, query.cols, sourceType );
float step = (sourceType == CV_8U ? 256.f : 1.f) / countFactor;
for( int qIdx = 0; qIdx < query.rows; qIdx++ )
{
Mat queryDescriptor = query.row(qIdx);
for( int c = 0; c < countFactor; c++ )
{
int tIdx = qIdx * countFactor + c;
Mat trainDescriptor = train.row(tIdx);
queryDescriptor.copyTo( trainDescriptor );
int elem = rng(dim);
float diff = rng.uniform( step*c, step*(c+1) );
trainDescriptor.col(elem) += diff;
}
}
}
} // namespace