opencv/modules/cudaarithm/src/cuda/cmp_mat.cu
2013-10-01 12:18:36 +04:00

220 lines
8.2 KiB
Plaintext

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/opencv_modules.hpp"
#ifndef HAVE_OPENCV_CUDEV
#error "opencv_cudev is required"
#else
#include "opencv2/cudev.hpp"
using namespace cv::cudev;
void cmpMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat&, double, Stream& stream, int cmpop);
namespace
{
template <class Op, typename T> struct CmpOp : binary_function<T, T, uchar>
{
__device__ __forceinline__ uchar operator()(T a, T b) const
{
Op op;
return -op(a, b);
}
};
template <typename ScalarDepth> struct TransformPolicy : DefaultTransformPolicy
{
};
template <> struct TransformPolicy<double> : DefaultTransformPolicy
{
enum {
shift = 1
};
};
template <template <typename> class Op, typename T>
void cmpMat_v1(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
CmpOp<Op<T>, T> op;
gridTransformBinary_< TransformPolicy<T> >(globPtr<T>(src1), globPtr<T>(src2), globPtr<uchar>(dst), op, stream);
}
struct VCmpEq4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
return vcmpeq4(a, b);
}
};
struct VCmpNe4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
return vcmpne4(a, b);
}
};
struct VCmpLt4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
return vcmplt4(a, b);
}
};
struct VCmpLe4 : binary_function<uint, uint, uint>
{
__device__ __forceinline__ uint operator ()(uint a, uint b) const
{
return vcmple4(a, b);
}
};
void cmpMatEq_v4(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
const int vcols = src1.cols >> 2;
GlobPtrSz<uint> src1_ = globPtr((uint*) src1.data, src1.step, src1.rows, vcols);
GlobPtrSz<uint> src2_ = globPtr((uint*) src2.data, src2.step, src1.rows, vcols);
GlobPtrSz<uint> dst_ = globPtr((uint*) dst.data, dst.step, src1.rows, vcols);
gridTransformBinary(src1_, src2_, dst_, VCmpEq4(), stream);
}
void cmpMatNe_v4(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
const int vcols = src1.cols >> 2;
GlobPtrSz<uint> src1_ = globPtr((uint*) src1.data, src1.step, src1.rows, vcols);
GlobPtrSz<uint> src2_ = globPtr((uint*) src2.data, src2.step, src1.rows, vcols);
GlobPtrSz<uint> dst_ = globPtr((uint*) dst.data, dst.step, src1.rows, vcols);
gridTransformBinary(src1_, src2_, dst_, VCmpNe4(), stream);
}
void cmpMatLt_v4(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
const int vcols = src1.cols >> 2;
GlobPtrSz<uint> src1_ = globPtr((uint*) src1.data, src1.step, src1.rows, vcols);
GlobPtrSz<uint> src2_ = globPtr((uint*) src2.data, src2.step, src1.rows, vcols);
GlobPtrSz<uint> dst_ = globPtr((uint*) dst.data, dst.step, src1.rows, vcols);
gridTransformBinary(src1_, src2_, dst_, VCmpLt4(), stream);
}
void cmpMatLe_v4(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
const int vcols = src1.cols >> 2;
GlobPtrSz<uint> src1_ = globPtr((uint*) src1.data, src1.step, src1.rows, vcols);
GlobPtrSz<uint> src2_ = globPtr((uint*) src2.data, src2.step, src1.rows, vcols);
GlobPtrSz<uint> dst_ = globPtr((uint*) dst.data, dst.step, src1.rows, vcols);
gridTransformBinary(src1_, src2_, dst_, VCmpLe4(), stream);
}
}
void cmpMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat&, double, Stream& stream, int cmpop)
{
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream);
static const func_t funcs[7][4] =
{
{cmpMat_v1<equal_to, uchar> , cmpMat_v1<not_equal_to, uchar> , cmpMat_v1<less, uchar> , cmpMat_v1<less_equal, uchar> },
{cmpMat_v1<equal_to, schar> , cmpMat_v1<not_equal_to, schar> , cmpMat_v1<less, schar> , cmpMat_v1<less_equal, schar> },
{cmpMat_v1<equal_to, ushort>, cmpMat_v1<not_equal_to, ushort>, cmpMat_v1<less, ushort>, cmpMat_v1<less_equal, ushort>},
{cmpMat_v1<equal_to, short> , cmpMat_v1<not_equal_to, short> , cmpMat_v1<less, short> , cmpMat_v1<less_equal, short> },
{cmpMat_v1<equal_to, int> , cmpMat_v1<not_equal_to, int> , cmpMat_v1<less, int> , cmpMat_v1<less_equal, int> },
{cmpMat_v1<equal_to, float> , cmpMat_v1<not_equal_to, float> , cmpMat_v1<less, float> , cmpMat_v1<less_equal, float> },
{cmpMat_v1<equal_to, double>, cmpMat_v1<not_equal_to, double>, cmpMat_v1<less, double>, cmpMat_v1<less_equal, double>}
};
typedef void (*func_v4_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream);
static const func_v4_t funcs_v4[] =
{
cmpMatEq_v4, cmpMatNe_v4, cmpMatLt_v4, cmpMatLe_v4
};
const int depth = src1.depth();
CV_DbgAssert( depth <= CV_64F );
static const int codes[] =
{
0, 2, 3, 2, 3, 1
};
const GpuMat* psrc1[] =
{
&src1, &src2, &src2, &src1, &src1, &src1
};
const GpuMat* psrc2[] =
{
&src2, &src1, &src1, &src2, &src2, &src2
};
const int code = codes[cmpop];
GpuMat src1_ = psrc1[cmpop]->reshape(1);
GpuMat src2_ = psrc2[cmpop]->reshape(1);
GpuMat dst_ = dst.reshape(1);
if (depth == CV_8U && (src1_.cols & 3) == 0)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const intptr_t dstptr = reinterpret_cast<intptr_t>(dst_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
if (isAllAligned)
{
funcs_v4[code](src1_, src2_, dst_, stream);
return;
}
}
const func_t func = funcs[depth][code];
func(src1_, src2_, dst_, stream);
}
#endif