mirror of
https://github.com/opencv/opencv.git
synced 2024-12-27 11:28:14 +08:00
8a178da1a4
use new abstract interface and hidden implementation
1078 lines
43 KiB
C++
1078 lines
43 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
|
|
|
Ptr<cv::cuda::DescriptorMatcher> cv::cuda::DescriptorMatcher::createBFMatcher(int) { throw_no_cuda(); return Ptr<cv::cuda::DescriptorMatcher>(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
namespace cv { namespace cuda { namespace device
|
|
{
|
|
namespace bf_match
|
|
{
|
|
template <typename T> void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream);
|
|
template <typename T> void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream);
|
|
template <typename T> void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream);
|
|
|
|
template <typename T> void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream);
|
|
template <typename T> void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream);
|
|
template <typename T> void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream);
|
|
}
|
|
|
|
namespace bf_knnmatch
|
|
{
|
|
template <typename T> void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
|
|
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
|
|
cudaStream_t stream);
|
|
template <typename T> void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
|
|
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
|
|
cudaStream_t stream);
|
|
template <typename T> void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
|
|
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
|
|
cudaStream_t stream);
|
|
|
|
template <typename T> void match2L1_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
|
|
cudaStream_t stream);
|
|
template <typename T> void match2L2_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
|
|
cudaStream_t stream);
|
|
template <typename T> void match2Hamming_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
|
|
cudaStream_t stream);
|
|
}
|
|
|
|
namespace bf_radius_match
|
|
{
|
|
template <typename T> void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
|
|
cudaStream_t stream);
|
|
template <typename T> void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
|
|
cudaStream_t stream);
|
|
template <typename T> void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
|
|
cudaStream_t stream);
|
|
|
|
template <typename T> void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
|
|
cudaStream_t stream);
|
|
|
|
template <typename T> void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
|
|
cudaStream_t stream);
|
|
|
|
template <typename T> void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
|
|
cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
static void makeGpuCollection(const std::vector<GpuMat>& trainDescCollection,
|
|
const std::vector<GpuMat>& masks,
|
|
GpuMat& trainCollection,
|
|
GpuMat& maskCollection)
|
|
{
|
|
if (trainDescCollection.empty())
|
|
return;
|
|
|
|
if (masks.empty())
|
|
{
|
|
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(PtrStepSzb)));
|
|
|
|
PtrStepSzb* trainCollectionCPU_ptr = trainCollectionCPU.ptr<PtrStepSzb>();
|
|
|
|
for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr)
|
|
*trainCollectionCPU_ptr = trainDescCollection[i];
|
|
|
|
trainCollection.upload(trainCollectionCPU);
|
|
maskCollection.release();
|
|
}
|
|
else
|
|
{
|
|
CV_Assert( masks.size() == trainDescCollection.size() );
|
|
|
|
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(PtrStepSzb)));
|
|
Mat maskCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(PtrStepb)));
|
|
|
|
PtrStepSzb* trainCollectionCPU_ptr = trainCollectionCPU.ptr<PtrStepSzb>();
|
|
PtrStepb* maskCollectionCPU_ptr = maskCollectionCPU.ptr<PtrStepb>();
|
|
|
|
for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr, ++maskCollectionCPU_ptr)
|
|
{
|
|
const GpuMat& train = trainDescCollection[i];
|
|
const GpuMat& mask = masks[i];
|
|
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.cols == train.rows) );
|
|
|
|
*trainCollectionCPU_ptr = train;
|
|
*maskCollectionCPU_ptr = mask;
|
|
}
|
|
|
|
trainCollection.upload(trainCollectionCPU);
|
|
maskCollection.upload(maskCollectionCPU);
|
|
}
|
|
}
|
|
|
|
class BFMatcher_Impl : public cv::cuda::DescriptorMatcher
|
|
{
|
|
public:
|
|
explicit BFMatcher_Impl(int norm) : norm_(norm)
|
|
{
|
|
CV_Assert( norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING );
|
|
}
|
|
|
|
virtual bool isMaskSupported() const { return true; }
|
|
|
|
virtual void add(const std::vector<GpuMat>& descriptors)
|
|
{
|
|
trainDescCollection_.insert(trainDescCollection_.end(), descriptors.begin(), descriptors.end());
|
|
}
|
|
|
|
virtual const std::vector<GpuMat>& getTrainDescriptors() const
|
|
{
|
|
return trainDescCollection_;
|
|
}
|
|
|
|
virtual void clear()
|
|
{
|
|
trainDescCollection_.clear();
|
|
}
|
|
|
|
virtual bool empty() const
|
|
{
|
|
return trainDescCollection_.empty();
|
|
}
|
|
|
|
virtual void train()
|
|
{
|
|
}
|
|
|
|
virtual void match(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
std::vector<DMatch>& matches,
|
|
InputArray mask = noArray());
|
|
|
|
virtual void match(InputArray queryDescriptors,
|
|
std::vector<DMatch>& matches,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
|
|
|
virtual void matchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
OutputArray matches,
|
|
InputArray mask = noArray(),
|
|
Stream& stream = Stream::Null());
|
|
|
|
virtual void matchAsync(InputArray queryDescriptors,
|
|
OutputArray matches,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
Stream& stream = Stream::Null());
|
|
|
|
virtual void matchConvert(InputArray gpu_matches,
|
|
std::vector<DMatch>& matches);
|
|
|
|
virtual void knnMatch(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
int k,
|
|
InputArray mask = noArray(),
|
|
bool compactResult = false);
|
|
|
|
virtual void knnMatch(InputArray queryDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
int k,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
bool compactResult = false);
|
|
|
|
virtual void knnMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
OutputArray matches,
|
|
int k,
|
|
InputArray mask = noArray(),
|
|
Stream& stream = Stream::Null());
|
|
|
|
virtual void knnMatchAsync(InputArray queryDescriptors,
|
|
OutputArray matches,
|
|
int k,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
Stream& stream = Stream::Null());
|
|
|
|
virtual void knnMatchConvert(InputArray gpu_matches,
|
|
std::vector< std::vector<DMatch> >& matches,
|
|
bool compactResult = false);
|
|
|
|
virtual void radiusMatch(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
float maxDistance,
|
|
InputArray mask = noArray(),
|
|
bool compactResult = false);
|
|
|
|
virtual void radiusMatch(InputArray queryDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
float maxDistance,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
bool compactResult = false);
|
|
|
|
virtual void radiusMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
|
OutputArray matches,
|
|
float maxDistance,
|
|
InputArray mask = noArray(),
|
|
Stream& stream = Stream::Null());
|
|
|
|
virtual void radiusMatchAsync(InputArray queryDescriptors,
|
|
OutputArray matches,
|
|
float maxDistance,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
|
Stream& stream = Stream::Null());
|
|
|
|
virtual void radiusMatchConvert(InputArray gpu_matches,
|
|
std::vector< std::vector<DMatch> >& matches,
|
|
bool compactResult = false);
|
|
|
|
private:
|
|
int norm_;
|
|
std::vector<GpuMat> trainDescCollection_;
|
|
};
|
|
|
|
//
|
|
// 1 to 1 match
|
|
//
|
|
|
|
void BFMatcher_Impl::match(InputArray _queryDescriptors, InputArray _trainDescriptors,
|
|
std::vector<DMatch>& matches,
|
|
InputArray _mask)
|
|
{
|
|
GpuMat d_matches;
|
|
matchAsync(_queryDescriptors, _trainDescriptors, d_matches, _mask);
|
|
matchConvert(d_matches, matches);
|
|
}
|
|
|
|
void BFMatcher_Impl::match(InputArray _queryDescriptors,
|
|
std::vector<DMatch>& matches,
|
|
const std::vector<GpuMat>& masks)
|
|
{
|
|
GpuMat d_matches;
|
|
matchAsync(_queryDescriptors, d_matches, masks);
|
|
matchConvert(d_matches, matches);
|
|
}
|
|
|
|
void BFMatcher_Impl::matchAsync(InputArray _queryDescriptors, InputArray _trainDescriptors,
|
|
OutputArray _matches,
|
|
InputArray _mask,
|
|
Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::bf_match;
|
|
|
|
const GpuMat query = _queryDescriptors.getGpuMat();
|
|
const GpuMat train = _trainDescriptors.getGpuMat();
|
|
const GpuMat mask = _mask.getGpuMat();
|
|
|
|
if (query.empty() || train.empty())
|
|
{
|
|
_matches.release();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( query.channels() == 1 && query.depth() < CV_64F );
|
|
CV_Assert( train.cols == query.cols && train.type() == query.type() );
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.rows == query.rows && mask.cols == train.rows) );
|
|
|
|
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream);
|
|
|
|
static const caller_t callersL1[] =
|
|
{
|
|
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
|
|
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
|
|
matchL1_gpu<int>, matchL1_gpu<float>
|
|
};
|
|
static const caller_t callersL2[] =
|
|
{
|
|
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
|
|
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
|
|
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
|
|
};
|
|
static const caller_t callersHamming[] =
|
|
{
|
|
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
|
|
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
|
|
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
|
|
};
|
|
|
|
const caller_t* callers = norm_ == NORM_L1 ? callersL1 : norm_ == NORM_L2 ? callersL2 : callersHamming;
|
|
|
|
const caller_t func = callers[query.depth()];
|
|
if (func == 0)
|
|
{
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported combination of query.depth() and norm");
|
|
}
|
|
|
|
const int nQuery = query.rows;
|
|
|
|
_matches.create(2, nQuery, CV_32SC1);
|
|
GpuMat matches = _matches.getGpuMat();
|
|
|
|
GpuMat trainIdx(1, nQuery, CV_32SC1, matches.ptr(0));
|
|
GpuMat distance(1, nQuery, CV_32FC1, matches.ptr(1));
|
|
|
|
func(query, train, mask, trainIdx, distance, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void BFMatcher_Impl::matchAsync(InputArray _queryDescriptors,
|
|
OutputArray _matches,
|
|
const std::vector<GpuMat>& masks,
|
|
Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::bf_match;
|
|
|
|
const GpuMat query = _queryDescriptors.getGpuMat();
|
|
|
|
if (query.empty() || trainDescCollection_.empty())
|
|
{
|
|
_matches.release();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( query.channels() == 1 && query.depth() < CV_64F );
|
|
|
|
GpuMat trainCollection, maskCollection;
|
|
makeGpuCollection(trainDescCollection_, masks, trainCollection, maskCollection);
|
|
|
|
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream);
|
|
|
|
static const caller_t callersL1[] =
|
|
{
|
|
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
|
|
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
|
|
matchL1_gpu<int>, matchL1_gpu<float>
|
|
};
|
|
static const caller_t callersL2[] =
|
|
{
|
|
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
|
|
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
|
|
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
|
|
};
|
|
static const caller_t callersHamming[] =
|
|
{
|
|
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
|
|
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
|
|
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
|
|
};
|
|
|
|
const caller_t* callers = norm_ == NORM_L1 ? callersL1 : norm_ == NORM_L2 ? callersL2 : callersHamming;
|
|
|
|
const caller_t func = callers[query.depth()];
|
|
if (func == 0)
|
|
{
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported combination of query.depth() and norm");
|
|
}
|
|
|
|
const int nQuery = query.rows;
|
|
|
|
_matches.create(3, nQuery, CV_32SC1);
|
|
GpuMat matches = _matches.getGpuMat();
|
|
|
|
GpuMat trainIdx(1, nQuery, CV_32SC1, matches.ptr(0));
|
|
GpuMat imgIdx(1, nQuery, CV_32SC1, matches.ptr(1));
|
|
GpuMat distance(1, nQuery, CV_32FC1, matches.ptr(2));
|
|
|
|
func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void BFMatcher_Impl::matchConvert(InputArray _gpu_matches,
|
|
std::vector<DMatch>& matches)
|
|
{
|
|
Mat gpu_matches;
|
|
if (_gpu_matches.kind() == _InputArray::CUDA_GPU_MAT)
|
|
{
|
|
_gpu_matches.getGpuMat().download(gpu_matches);
|
|
}
|
|
else
|
|
{
|
|
gpu_matches = _gpu_matches.getMat();
|
|
}
|
|
|
|
if (gpu_matches.empty())
|
|
{
|
|
matches.clear();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( (gpu_matches.type() == CV_32SC1) && (gpu_matches.rows == 2 || gpu_matches.rows == 3) );
|
|
|
|
const int nQuery = gpu_matches.cols;
|
|
|
|
matches.clear();
|
|
matches.reserve(nQuery);
|
|
|
|
const int* trainIdxPtr = NULL;
|
|
const int* imgIdxPtr = NULL;
|
|
const float* distancePtr = NULL;
|
|
|
|
if (gpu_matches.rows == 2)
|
|
{
|
|
trainIdxPtr = gpu_matches.ptr<int>(0);
|
|
distancePtr = gpu_matches.ptr<float>(1);
|
|
}
|
|
else
|
|
{
|
|
trainIdxPtr = gpu_matches.ptr<int>(0);
|
|
imgIdxPtr = gpu_matches.ptr<int>(1);
|
|
distancePtr = gpu_matches.ptr<float>(2);
|
|
}
|
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
|
|
{
|
|
const int trainIdx = trainIdxPtr[queryIdx];
|
|
if (trainIdx == -1)
|
|
continue;
|
|
|
|
const int imgIdx = imgIdxPtr ? imgIdxPtr[queryIdx] : 0;
|
|
const float distance = distancePtr[queryIdx];
|
|
|
|
DMatch m(queryIdx, trainIdx, imgIdx, distance);
|
|
|
|
matches.push_back(m);
|
|
}
|
|
}
|
|
|
|
//
|
|
// knn match
|
|
//
|
|
|
|
void BFMatcher_Impl::knnMatch(InputArray _queryDescriptors, InputArray _trainDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
int k,
|
|
InputArray _mask,
|
|
bool compactResult)
|
|
{
|
|
GpuMat d_matches;
|
|
knnMatchAsync(_queryDescriptors, _trainDescriptors, d_matches, k, _mask);
|
|
knnMatchConvert(d_matches, matches, compactResult);
|
|
}
|
|
|
|
void BFMatcher_Impl::knnMatch(InputArray _queryDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
int k,
|
|
const std::vector<GpuMat>& masks,
|
|
bool compactResult)
|
|
{
|
|
if (k == 2)
|
|
{
|
|
GpuMat d_matches;
|
|
knnMatchAsync(_queryDescriptors, d_matches, k, masks);
|
|
knnMatchConvert(d_matches, matches, compactResult);
|
|
}
|
|
else
|
|
{
|
|
const GpuMat query = _queryDescriptors.getGpuMat();
|
|
|
|
if (query.empty() || trainDescCollection_.empty())
|
|
{
|
|
matches.clear();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( query.channels() == 1 && query.depth() < CV_64F );
|
|
|
|
std::vector< std::vector<DMatch> > curMatches;
|
|
std::vector<DMatch> temp;
|
|
temp.reserve(2 * k);
|
|
|
|
matches.resize(query.rows);
|
|
for (size_t i = 0; i < matches.size(); ++i)
|
|
matches[i].reserve(k);
|
|
|
|
for (size_t imgIdx = 0; imgIdx < trainDescCollection_.size(); ++imgIdx)
|
|
{
|
|
knnMatch(query, trainDescCollection_[imgIdx], curMatches, k, masks.empty() ? GpuMat() : masks[imgIdx]);
|
|
|
|
for (int queryIdx = 0; queryIdx < query.rows; ++queryIdx)
|
|
{
|
|
std::vector<DMatch>& localMatch = curMatches[queryIdx];
|
|
std::vector<DMatch>& globalMatch = matches[queryIdx];
|
|
|
|
for (size_t i = 0; i < localMatch.size(); ++i)
|
|
localMatch[i].imgIdx = imgIdx;
|
|
|
|
temp.clear();
|
|
std::merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), std::back_inserter(temp));
|
|
|
|
globalMatch.clear();
|
|
const size_t count = std::min(static_cast<size_t>(k), temp.size());
|
|
std::copy(temp.begin(), temp.begin() + count, std::back_inserter(globalMatch));
|
|
}
|
|
}
|
|
|
|
if (compactResult)
|
|
{
|
|
std::vector< std::vector<DMatch> >::iterator new_end = std::remove_if(matches.begin(), matches.end(), std::mem_fun_ref(&std::vector<DMatch>::empty));
|
|
matches.erase(new_end, matches.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
void BFMatcher_Impl::knnMatchAsync(InputArray _queryDescriptors, InputArray _trainDescriptors,
|
|
OutputArray _matches,
|
|
int k,
|
|
InputArray _mask,
|
|
Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::bf_knnmatch;
|
|
|
|
const GpuMat query = _queryDescriptors.getGpuMat();
|
|
const GpuMat train = _trainDescriptors.getGpuMat();
|
|
const GpuMat mask = _mask.getGpuMat();
|
|
|
|
if (query.empty() || train.empty())
|
|
{
|
|
_matches.release();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( query.channels() == 1 && query.depth() < CV_64F );
|
|
CV_Assert( train.cols == query.cols && train.type() == query.type() );
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.rows == query.rows && mask.cols == train.rows) );
|
|
|
|
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
|
|
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
|
|
cudaStream_t stream);
|
|
|
|
static const caller_t callersL1[] =
|
|
{
|
|
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
|
|
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
|
|
matchL1_gpu<int>, matchL1_gpu<float>
|
|
};
|
|
static const caller_t callersL2[] =
|
|
{
|
|
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
|
|
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
|
|
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
|
|
};
|
|
static const caller_t callersHamming[] =
|
|
{
|
|
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
|
|
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
|
|
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
|
|
};
|
|
|
|
const caller_t* callers = norm_ == NORM_L1 ? callersL1 : norm_ == NORM_L2 ? callersL2 : callersHamming;
|
|
|
|
const caller_t func = callers[query.depth()];
|
|
if (func == 0)
|
|
{
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported combination of query.depth() and norm");
|
|
}
|
|
|
|
const int nQuery = query.rows;
|
|
const int nTrain = train.rows;
|
|
|
|
GpuMat trainIdx, distance, allDist;
|
|
if (k == 2)
|
|
{
|
|
_matches.create(2, nQuery, CV_32SC2);
|
|
GpuMat matches = _matches.getGpuMat();
|
|
|
|
trainIdx = GpuMat(1, nQuery, CV_32SC2, matches.ptr(0));
|
|
distance = GpuMat(1, nQuery, CV_32FC2, matches.ptr(1));
|
|
}
|
|
else
|
|
{
|
|
_matches.create(2 * nQuery, k, CV_32SC1);
|
|
GpuMat matches = _matches.getGpuMat();
|
|
|
|
trainIdx = GpuMat(nQuery, k, CV_32SC1, matches.ptr(0), matches.step);
|
|
distance = GpuMat(nQuery, k, CV_32FC1, matches.ptr(nQuery), matches.step);
|
|
|
|
BufferPool pool(stream);
|
|
allDist = pool.getBuffer(nQuery, nTrain, CV_32FC1);
|
|
}
|
|
|
|
trainIdx.setTo(Scalar::all(-1), stream);
|
|
|
|
func(query, train, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void BFMatcher_Impl::knnMatchAsync(InputArray _queryDescriptors,
|
|
OutputArray _matches,
|
|
int k,
|
|
const std::vector<GpuMat>& masks,
|
|
Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::bf_knnmatch;
|
|
|
|
if (k != 2)
|
|
{
|
|
CV_Error(Error::StsNotImplemented, "only k=2 mode is supported for now");
|
|
}
|
|
|
|
const GpuMat query = _queryDescriptors.getGpuMat();
|
|
|
|
if (query.empty() || trainDescCollection_.empty())
|
|
{
|
|
_matches.release();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( query.channels() == 1 && query.depth() < CV_64F );
|
|
|
|
GpuMat trainCollection, maskCollection;
|
|
makeGpuCollection(trainDescCollection_, masks, trainCollection, maskCollection);
|
|
|
|
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
|
|
cudaStream_t stream);
|
|
|
|
static const caller_t callersL1[] =
|
|
{
|
|
match2L1_gpu<unsigned char>, 0/*match2L1_gpu<signed char>*/,
|
|
match2L1_gpu<unsigned short>, match2L1_gpu<short>,
|
|
match2L1_gpu<int>, match2L1_gpu<float>
|
|
};
|
|
static const caller_t callersL2[] =
|
|
{
|
|
0/*match2L2_gpu<unsigned char>*/, 0/*match2L2_gpu<signed char>*/,
|
|
0/*match2L2_gpu<unsigned short>*/, 0/*match2L2_gpu<short>*/,
|
|
0/*match2L2_gpu<int>*/, match2L2_gpu<float>
|
|
};
|
|
static const caller_t callersHamming[] =
|
|
{
|
|
match2Hamming_gpu<unsigned char>, 0/*match2Hamming_gpu<signed char>*/,
|
|
match2Hamming_gpu<unsigned short>, 0/*match2Hamming_gpu<short>*/,
|
|
match2Hamming_gpu<int>, 0/*match2Hamming_gpu<float>*/
|
|
};
|
|
|
|
const caller_t* callers = norm_ == NORM_L1 ? callersL1 : norm_ == NORM_L2 ? callersL2 : callersHamming;
|
|
|
|
const caller_t func = callers[query.depth()];
|
|
if (func == 0)
|
|
{
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported combination of query.depth() and norm");
|
|
}
|
|
|
|
const int nQuery = query.rows;
|
|
|
|
_matches.create(3, nQuery, CV_32SC2);
|
|
GpuMat matches = _matches.getGpuMat();
|
|
|
|
GpuMat trainIdx(1, nQuery, CV_32SC2, matches.ptr(0));
|
|
GpuMat imgIdx(1, nQuery, CV_32SC2, matches.ptr(1));
|
|
GpuMat distance(1, nQuery, CV_32FC2, matches.ptr(2));
|
|
|
|
trainIdx.setTo(Scalar::all(-1), stream);
|
|
|
|
func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void BFMatcher_Impl::knnMatchConvert(InputArray _gpu_matches,
|
|
std::vector< std::vector<DMatch> >& matches,
|
|
bool compactResult)
|
|
{
|
|
Mat gpu_matches;
|
|
if (_gpu_matches.kind() == _InputArray::CUDA_GPU_MAT)
|
|
{
|
|
_gpu_matches.getGpuMat().download(gpu_matches);
|
|
}
|
|
else
|
|
{
|
|
gpu_matches = _gpu_matches.getMat();
|
|
}
|
|
|
|
if (gpu_matches.empty())
|
|
{
|
|
matches.clear();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( ((gpu_matches.type() == CV_32SC2) && (gpu_matches.rows == 2 || gpu_matches.rows == 3)) ||
|
|
(gpu_matches.type() == CV_32SC1) );
|
|
|
|
int nQuery = -1, k = -1;
|
|
|
|
const int* trainIdxPtr = NULL;
|
|
const int* imgIdxPtr = NULL;
|
|
const float* distancePtr = NULL;
|
|
|
|
if (gpu_matches.type() == CV_32SC2)
|
|
{
|
|
nQuery = gpu_matches.cols;
|
|
k = 2;
|
|
|
|
if (gpu_matches.rows == 2)
|
|
{
|
|
trainIdxPtr = gpu_matches.ptr<int>(0);
|
|
distancePtr = gpu_matches.ptr<float>(1);
|
|
}
|
|
else
|
|
{
|
|
trainIdxPtr = gpu_matches.ptr<int>(0);
|
|
imgIdxPtr = gpu_matches.ptr<int>(1);
|
|
distancePtr = gpu_matches.ptr<float>(2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
nQuery = gpu_matches.rows / 2;
|
|
k = gpu_matches.cols;
|
|
|
|
trainIdxPtr = gpu_matches.ptr<int>(0);
|
|
distancePtr = gpu_matches.ptr<float>(nQuery);
|
|
}
|
|
|
|
matches.clear();
|
|
matches.reserve(nQuery);
|
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
|
|
{
|
|
matches.push_back(std::vector<DMatch>());
|
|
std::vector<DMatch>& curMatches = matches.back();
|
|
curMatches.reserve(k);
|
|
|
|
for (int i = 0; i < k; ++i)
|
|
{
|
|
const int trainIdx = *trainIdxPtr;
|
|
if (trainIdx == -1)
|
|
continue;
|
|
|
|
const int imgIdx = imgIdxPtr ? *imgIdxPtr : 0;
|
|
const float distance = *distancePtr;
|
|
|
|
DMatch m(queryIdx, trainIdx, imgIdx, distance);
|
|
|
|
curMatches.push_back(m);
|
|
|
|
++trainIdxPtr;
|
|
++distancePtr;
|
|
if (imgIdxPtr)
|
|
++imgIdxPtr;
|
|
}
|
|
|
|
if (compactResult && curMatches.empty())
|
|
{
|
|
matches.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// radius match
|
|
//
|
|
|
|
void BFMatcher_Impl::radiusMatch(InputArray _queryDescriptors, InputArray _trainDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
float maxDistance,
|
|
InputArray _mask,
|
|
bool compactResult)
|
|
{
|
|
GpuMat d_matches;
|
|
radiusMatchAsync(_queryDescriptors, _trainDescriptors, d_matches, maxDistance, _mask);
|
|
radiusMatchConvert(d_matches, matches, compactResult);
|
|
}
|
|
|
|
void BFMatcher_Impl::radiusMatch(InputArray _queryDescriptors,
|
|
std::vector<std::vector<DMatch> >& matches,
|
|
float maxDistance,
|
|
const std::vector<GpuMat>& masks,
|
|
bool compactResult)
|
|
{
|
|
GpuMat d_matches;
|
|
radiusMatchAsync(_queryDescriptors, d_matches, maxDistance, masks);
|
|
radiusMatchConvert(d_matches, matches, compactResult);
|
|
}
|
|
|
|
void BFMatcher_Impl::radiusMatchAsync(InputArray _queryDescriptors, InputArray _trainDescriptors,
|
|
OutputArray _matches,
|
|
float maxDistance,
|
|
InputArray _mask,
|
|
Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::bf_radius_match;
|
|
|
|
const GpuMat query = _queryDescriptors.getGpuMat();
|
|
const GpuMat train = _trainDescriptors.getGpuMat();
|
|
const GpuMat mask = _mask.getGpuMat();
|
|
|
|
if (query.empty() || train.empty())
|
|
{
|
|
_matches.release();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( query.channels() == 1 && query.depth() < CV_64F );
|
|
CV_Assert( train.cols == query.cols && train.type() == query.type() );
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.rows == query.rows && mask.cols == train.rows) );
|
|
|
|
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
|
|
cudaStream_t stream);
|
|
|
|
static const caller_t callersL1[] =
|
|
{
|
|
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
|
|
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
|
|
matchL1_gpu<int>, matchL1_gpu<float>
|
|
};
|
|
static const caller_t callersL2[] =
|
|
{
|
|
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
|
|
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
|
|
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
|
|
};
|
|
static const caller_t callersHamming[] =
|
|
{
|
|
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
|
|
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
|
|
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
|
|
};
|
|
|
|
const caller_t* callers = norm_ == NORM_L1 ? callersL1 : norm_ == NORM_L2 ? callersL2 : callersHamming;
|
|
|
|
const caller_t func = callers[query.depth()];
|
|
if (func == 0)
|
|
{
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported combination of query.depth() and norm");
|
|
}
|
|
|
|
const int nQuery = query.rows;
|
|
const int nTrain = train.rows;
|
|
|
|
const int cols = std::max((nTrain / 100), nQuery);
|
|
|
|
_matches.create(2 * nQuery + 1, cols, CV_32SC1);
|
|
GpuMat matches = _matches.getGpuMat();
|
|
|
|
GpuMat trainIdx(nQuery, cols, CV_32SC1, matches.ptr(0), matches.step);
|
|
GpuMat distance(nQuery, cols, CV_32FC1, matches.ptr(nQuery), matches.step);
|
|
GpuMat nMatches(1, nQuery, CV_32SC1, matches.ptr(2 * nQuery));
|
|
|
|
nMatches.setTo(Scalar::all(0), stream);
|
|
|
|
func(query, train, maxDistance, mask, trainIdx, distance, nMatches, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void BFMatcher_Impl::radiusMatchAsync(InputArray _queryDescriptors,
|
|
OutputArray _matches,
|
|
float maxDistance,
|
|
const std::vector<GpuMat>& masks,
|
|
Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::bf_radius_match;
|
|
|
|
const GpuMat query = _queryDescriptors.getGpuMat();
|
|
|
|
if (query.empty() || trainDescCollection_.empty())
|
|
{
|
|
_matches.release();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( query.channels() == 1 && query.depth() < CV_64F );
|
|
|
|
GpuMat trainCollection, maskCollection;
|
|
makeGpuCollection(trainDescCollection_, masks, trainCollection, maskCollection);
|
|
|
|
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
|
|
cudaStream_t stream);
|
|
|
|
static const caller_t callersL1[] =
|
|
{
|
|
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
|
|
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
|
|
matchL1_gpu<int>, matchL1_gpu<float>
|
|
};
|
|
static const caller_t callersL2[] =
|
|
{
|
|
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
|
|
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
|
|
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
|
|
};
|
|
static const caller_t callersHamming[] =
|
|
{
|
|
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
|
|
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
|
|
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
|
|
};
|
|
|
|
const caller_t* callers = norm_ == NORM_L1 ? callersL1 : norm_ == NORM_L2 ? callersL2 : callersHamming;
|
|
|
|
const caller_t func = callers[query.depth()];
|
|
if (func == 0)
|
|
{
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported combination of query.depth() and norm");
|
|
}
|
|
|
|
const int nQuery = query.rows;
|
|
|
|
_matches.create(3 * nQuery + 1, nQuery, CV_32FC1);
|
|
GpuMat matches = _matches.getGpuMat();
|
|
|
|
GpuMat trainIdx(nQuery, nQuery, CV_32SC1, matches.ptr(0), matches.step);
|
|
GpuMat imgIdx(nQuery, nQuery, CV_32SC1, matches.ptr(nQuery), matches.step);
|
|
GpuMat distance(nQuery, nQuery, CV_32FC1, matches.ptr(2 * nQuery), matches.step);
|
|
GpuMat nMatches(1, nQuery, CV_32SC1, matches.ptr(3 * nQuery));
|
|
|
|
nMatches.setTo(Scalar::all(0), stream);
|
|
|
|
std::vector<PtrStepSzb> trains_(trainDescCollection_.begin(), trainDescCollection_.end());
|
|
std::vector<PtrStepSzb> masks_(masks.begin(), masks.end());
|
|
|
|
func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0],
|
|
trainIdx, imgIdx, distance, nMatches, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void BFMatcher_Impl::radiusMatchConvert(InputArray _gpu_matches,
|
|
std::vector< std::vector<DMatch> >& matches,
|
|
bool compactResult)
|
|
{
|
|
Mat gpu_matches;
|
|
if (_gpu_matches.kind() == _InputArray::CUDA_GPU_MAT)
|
|
{
|
|
_gpu_matches.getGpuMat().download(gpu_matches);
|
|
}
|
|
else
|
|
{
|
|
gpu_matches = _gpu_matches.getMat();
|
|
}
|
|
|
|
if (gpu_matches.empty())
|
|
{
|
|
matches.clear();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( gpu_matches.type() == CV_32SC1 || gpu_matches.type() == CV_32FC1 );
|
|
|
|
int nQuery = -1;
|
|
|
|
const int* trainIdxPtr = NULL;
|
|
const int* imgIdxPtr = NULL;
|
|
const float* distancePtr = NULL;
|
|
const int* nMatchesPtr = NULL;
|
|
|
|
if (gpu_matches.type() == CV_32SC1)
|
|
{
|
|
nQuery = (gpu_matches.rows - 1) / 2;
|
|
|
|
trainIdxPtr = gpu_matches.ptr<int>(0);
|
|
distancePtr = gpu_matches.ptr<float>(nQuery);
|
|
nMatchesPtr = gpu_matches.ptr<int>(2 * nQuery);
|
|
}
|
|
else
|
|
{
|
|
nQuery = (gpu_matches.rows - 1) / 3;
|
|
|
|
trainIdxPtr = gpu_matches.ptr<int>(0);
|
|
imgIdxPtr = gpu_matches.ptr<int>(nQuery);
|
|
distancePtr = gpu_matches.ptr<float>(2 * nQuery);
|
|
nMatchesPtr = gpu_matches.ptr<int>(3 * nQuery);
|
|
}
|
|
|
|
matches.clear();
|
|
matches.reserve(nQuery);
|
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
|
|
{
|
|
const int nMatched = std::min(nMatchesPtr[queryIdx], gpu_matches.cols);
|
|
|
|
if (nMatched == 0)
|
|
{
|
|
if (!compactResult)
|
|
{
|
|
matches.push_back(std::vector<DMatch>());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
matches.push_back(std::vector<DMatch>(nMatched));
|
|
std::vector<DMatch>& curMatches = matches.back();
|
|
|
|
for (int i = 0; i < nMatched; ++i)
|
|
{
|
|
const int trainIdx = trainIdxPtr[i];
|
|
|
|
const int imgIdx = imgIdxPtr ? imgIdxPtr[i] : 0;
|
|
const float distance = distancePtr[i];
|
|
|
|
DMatch m(queryIdx, trainIdx, imgIdx, distance);
|
|
|
|
curMatches[i] = m;
|
|
}
|
|
|
|
std::sort(curMatches.begin(), curMatches.end());
|
|
}
|
|
|
|
trainIdxPtr += gpu_matches.cols;
|
|
distancePtr += gpu_matches.cols;
|
|
if (imgIdxPtr)
|
|
imgIdxPtr += gpu_matches.cols;
|
|
}
|
|
}
|
|
}
|
|
|
|
Ptr<cv::cuda::DescriptorMatcher> cv::cuda::DescriptorMatcher::createBFMatcher(int norm)
|
|
{
|
|
return makePtr<BFMatcher_Impl>(norm);
|
|
}
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|