mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 10:29:11 +08:00
422 lines
14 KiB
C
422 lines
14 KiB
C
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Macroblock analysis
|
|
//
|
|
// Author: Skal (pascal.massimino@gmail.com)
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "./vp8enci.h"
|
|
#include "./cost.h"
|
|
#include "../utils/utils.h"
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define MAX_ITERS_K_MEANS 6
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Smooth the segment map by replacing isolated block by the majority of its
|
|
// neighbours.
|
|
|
|
static void SmoothSegmentMap(VP8Encoder* const enc) {
|
|
int n, x, y;
|
|
const int w = enc->mb_w_;
|
|
const int h = enc->mb_h_;
|
|
const int majority_cnt_3_x_3_grid = 5;
|
|
uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp));
|
|
assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec
|
|
|
|
if (tmp == NULL) return;
|
|
for (y = 1; y < h - 1; ++y) {
|
|
for (x = 1; x < w - 1; ++x) {
|
|
int cnt[NUM_MB_SEGMENTS] = { 0 };
|
|
const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
|
|
int majority_seg = mb->segment_;
|
|
// Check the 8 neighbouring segment values.
|
|
cnt[mb[-w - 1].segment_]++; // top-left
|
|
cnt[mb[-w + 0].segment_]++; // top
|
|
cnt[mb[-w + 1].segment_]++; // top-right
|
|
cnt[mb[ - 1].segment_]++; // left
|
|
cnt[mb[ + 1].segment_]++; // right
|
|
cnt[mb[ w - 1].segment_]++; // bottom-left
|
|
cnt[mb[ w + 0].segment_]++; // bottom
|
|
cnt[mb[ w + 1].segment_]++; // bottom-right
|
|
for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
|
|
if (cnt[n] >= majority_cnt_3_x_3_grid) {
|
|
majority_seg = n;
|
|
}
|
|
}
|
|
tmp[x + y * w] = majority_seg;
|
|
}
|
|
}
|
|
for (y = 1; y < h - 1; ++y) {
|
|
for (x = 1; x < w - 1; ++x) {
|
|
VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
|
|
mb->segment_ = tmp[x + y * w];
|
|
}
|
|
}
|
|
free(tmp);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// set segment susceptibility alpha_ / beta_
|
|
|
|
static WEBP_INLINE int clip(int v, int m, int M) {
|
|
return (v < m) ? m : (v > M) ? M : v;
|
|
}
|
|
|
|
static void SetSegmentAlphas(VP8Encoder* const enc,
|
|
const int centers[NUM_MB_SEGMENTS],
|
|
int mid) {
|
|
const int nb = enc->segment_hdr_.num_segments_;
|
|
int min = centers[0], max = centers[0];
|
|
int n;
|
|
|
|
if (nb > 1) {
|
|
for (n = 0; n < nb; ++n) {
|
|
if (min > centers[n]) min = centers[n];
|
|
if (max < centers[n]) max = centers[n];
|
|
}
|
|
}
|
|
if (max == min) max = min + 1;
|
|
assert(mid <= max && mid >= min);
|
|
for (n = 0; n < nb; ++n) {
|
|
const int alpha = 255 * (centers[n] - mid) / (max - min);
|
|
const int beta = 255 * (centers[n] - min) / (max - min);
|
|
enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
|
|
enc->dqm_[n].beta_ = clip(beta, 0, 255);
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Compute susceptibility based on DCT-coeff histograms:
|
|
// the higher, the "easier" the macroblock is to compress.
|
|
|
|
#define MAX_ALPHA 255 // 8b of precision for susceptibilities.
|
|
#define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
|
|
#define DEFAULT_ALPHA (-1)
|
|
#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
|
|
|
|
static int FinalAlphaValue(int alpha) {
|
|
alpha = MAX_ALPHA - alpha;
|
|
return clip(alpha, 0, MAX_ALPHA);
|
|
}
|
|
|
|
static int GetAlpha(const VP8Histogram* const histo) {
|
|
int max_value = 0, last_non_zero = 1;
|
|
int k;
|
|
int alpha;
|
|
for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
|
|
const int value = histo->distribution[k];
|
|
if (value > 0) {
|
|
if (value > max_value) max_value = value;
|
|
last_non_zero = k;
|
|
}
|
|
}
|
|
// 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
|
|
// values which happen to be mostly noise. This leaves the maximum precision
|
|
// for handling the useful small values which contribute most.
|
|
alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
|
|
return alpha;
|
|
}
|
|
|
|
static void MergeHistograms(const VP8Histogram* const in,
|
|
VP8Histogram* const out) {
|
|
int i;
|
|
for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
|
|
out->distribution[i] += in->distribution[i];
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Simplified k-Means, to assign Nb segments based on alpha-histogram
|
|
|
|
static void AssignSegments(VP8Encoder* const enc,
|
|
const int alphas[MAX_ALPHA + 1]) {
|
|
const int nb = enc->segment_hdr_.num_segments_;
|
|
int centers[NUM_MB_SEGMENTS];
|
|
int weighted_average = 0;
|
|
int map[MAX_ALPHA + 1];
|
|
int a, n, k;
|
|
int min_a = 0, max_a = MAX_ALPHA, range_a;
|
|
// 'int' type is ok for histo, and won't overflow
|
|
int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
|
|
|
|
// bracket the input
|
|
for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
|
|
min_a = n;
|
|
for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
|
|
max_a = n;
|
|
range_a = max_a - min_a;
|
|
|
|
// Spread initial centers evenly
|
|
for (n = 1, k = 0; n < 2 * nb; n += 2) {
|
|
centers[k++] = min_a + (n * range_a) / (2 * nb);
|
|
}
|
|
|
|
for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough
|
|
int total_weight;
|
|
int displaced;
|
|
// Reset stats
|
|
for (n = 0; n < nb; ++n) {
|
|
accum[n] = 0;
|
|
dist_accum[n] = 0;
|
|
}
|
|
// Assign nearest center for each 'a'
|
|
n = 0; // track the nearest center for current 'a'
|
|
for (a = min_a; a <= max_a; ++a) {
|
|
if (alphas[a]) {
|
|
while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) {
|
|
n++;
|
|
}
|
|
map[a] = n;
|
|
// accumulate contribution into best centroid
|
|
dist_accum[n] += a * alphas[a];
|
|
accum[n] += alphas[a];
|
|
}
|
|
}
|
|
// All point are classified. Move the centroids to the
|
|
// center of their respective cloud.
|
|
displaced = 0;
|
|
weighted_average = 0;
|
|
total_weight = 0;
|
|
for (n = 0; n < nb; ++n) {
|
|
if (accum[n]) {
|
|
const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
|
|
displaced += abs(centers[n] - new_center);
|
|
centers[n] = new_center;
|
|
weighted_average += new_center * accum[n];
|
|
total_weight += accum[n];
|
|
}
|
|
}
|
|
weighted_average = (weighted_average + total_weight / 2) / total_weight;
|
|
if (displaced < 5) break; // no need to keep on looping...
|
|
}
|
|
|
|
// Map each original value to the closest centroid
|
|
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
|
VP8MBInfo* const mb = &enc->mb_info_[n];
|
|
const int alpha = mb->alpha_;
|
|
mb->segment_ = map[alpha];
|
|
mb->alpha_ = centers[map[alpha]]; // for the record.
|
|
}
|
|
|
|
if (nb > 1) {
|
|
const int smooth = (enc->config_->preprocessing & 1);
|
|
if (smooth) SmoothSegmentMap(enc);
|
|
}
|
|
|
|
SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Macroblock analysis: collect histogram for each mode, deduce the maximal
|
|
// susceptibility and set best modes for this macroblock.
|
|
// Segment assignment is done later.
|
|
|
|
// Number of modes to inspect for alpha_ evaluation. For high-quality settings
|
|
// (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes
|
|
// during the analysis phase.
|
|
#define FAST_ANALYSIS_METHOD 4 // method above which we do partial analysis
|
|
#define MAX_INTRA16_MODE 2
|
|
#define MAX_INTRA4_MODE 2
|
|
#define MAX_UV_MODE 2
|
|
|
|
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
|
|
const int max_mode =
|
|
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE
|
|
: NUM_PRED_MODES;
|
|
int mode;
|
|
int best_alpha = DEFAULT_ALPHA;
|
|
int best_mode = 0;
|
|
|
|
VP8MakeLuma16Preds(it);
|
|
for (mode = 0; mode < max_mode; ++mode) {
|
|
VP8Histogram histo = { { 0 } };
|
|
int alpha;
|
|
|
|
VP8CollectHistogram(it->yuv_in_ + Y_OFF,
|
|
it->yuv_p_ + VP8I16ModeOffsets[mode],
|
|
0, 16, &histo);
|
|
alpha = GetAlpha(&histo);
|
|
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
|
|
best_alpha = alpha;
|
|
best_mode = mode;
|
|
}
|
|
}
|
|
VP8SetIntra16Mode(it, best_mode);
|
|
return best_alpha;
|
|
}
|
|
|
|
static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
|
|
int best_alpha) {
|
|
uint8_t modes[16];
|
|
const int max_mode =
|
|
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE
|
|
: NUM_BMODES;
|
|
int i4_alpha;
|
|
VP8Histogram total_histo = { { 0 } };
|
|
int cur_histo = 0;
|
|
|
|
VP8IteratorStartI4(it);
|
|
do {
|
|
int mode;
|
|
int best_mode_alpha = DEFAULT_ALPHA;
|
|
VP8Histogram histos[2];
|
|
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
|
|
|
|
VP8MakeIntra4Preds(it);
|
|
for (mode = 0; mode < max_mode; ++mode) {
|
|
int alpha;
|
|
|
|
memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
|
|
VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
|
|
0, 1, &histos[cur_histo]);
|
|
alpha = GetAlpha(&histos[cur_histo]);
|
|
if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
|
|
best_mode_alpha = alpha;
|
|
modes[it->i4_] = mode;
|
|
cur_histo ^= 1; // keep track of best histo so far.
|
|
}
|
|
}
|
|
// accumulate best histogram
|
|
MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
|
|
// Note: we reuse the original samples for predictors
|
|
} while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
|
|
|
|
i4_alpha = GetAlpha(&total_histo);
|
|
if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
|
|
VP8SetIntra4Mode(it, modes);
|
|
best_alpha = i4_alpha;
|
|
}
|
|
return best_alpha;
|
|
}
|
|
|
|
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
|
|
int best_alpha = DEFAULT_ALPHA;
|
|
int best_mode = 0;
|
|
const int max_mode =
|
|
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE
|
|
: NUM_PRED_MODES;
|
|
int mode;
|
|
VP8MakeChroma8Preds(it);
|
|
for (mode = 0; mode < max_mode; ++mode) {
|
|
VP8Histogram histo = { { 0 } };
|
|
int alpha;
|
|
VP8CollectHistogram(it->yuv_in_ + U_OFF,
|
|
it->yuv_p_ + VP8UVModeOffsets[mode],
|
|
16, 16 + 4 + 4, &histo);
|
|
alpha = GetAlpha(&histo);
|
|
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
|
|
best_alpha = alpha;
|
|
best_mode = mode;
|
|
}
|
|
}
|
|
VP8SetIntraUVMode(it, best_mode);
|
|
return best_alpha;
|
|
}
|
|
|
|
static void MBAnalyze(VP8EncIterator* const it,
|
|
int alphas[MAX_ALPHA + 1],
|
|
int* const alpha, int* const uv_alpha) {
|
|
const VP8Encoder* const enc = it->enc_;
|
|
int best_alpha, best_uv_alpha;
|
|
|
|
VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED
|
|
VP8SetSkip(it, 0); // not skipped
|
|
VP8SetSegment(it, 0); // default segment, spec-wise.
|
|
|
|
best_alpha = MBAnalyzeBestIntra16Mode(it);
|
|
if (enc->method_ >= 5) {
|
|
// We go and make a fast decision for intra4/intra16.
|
|
// It's usually not a good and definitive pick, but helps seeding the stats
|
|
// about level bit-cost.
|
|
// TODO(skal): improve criterion.
|
|
best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
|
|
}
|
|
best_uv_alpha = MBAnalyzeBestUVMode(it);
|
|
|
|
// Final susceptibility mix
|
|
best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
|
|
best_alpha = FinalAlphaValue(best_alpha);
|
|
alphas[best_alpha]++;
|
|
it->mb_->alpha_ = best_alpha; // for later remapping.
|
|
|
|
// Accumulate for later complexity analysis.
|
|
*alpha += best_alpha; // mixed susceptibility (not just luma)
|
|
*uv_alpha += best_uv_alpha;
|
|
}
|
|
|
|
static void DefaultMBInfo(VP8MBInfo* const mb) {
|
|
mb->type_ = 1; // I16x16
|
|
mb->uv_mode_ = 0;
|
|
mb->skip_ = 0; // not skipped
|
|
mb->segment_ = 0; // default segment
|
|
mb->alpha_ = 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Main analysis loop:
|
|
// Collect all susceptibilities for each macroblock and record their
|
|
// distribution in alphas[]. Segments is assigned a-posteriori, based on
|
|
// this histogram.
|
|
// We also pick an intra16 prediction mode, which shouldn't be considered
|
|
// final except for fast-encode settings. We can also pick some intra4 modes
|
|
// and decide intra4/intra16, but that's usually almost always a bad choice at
|
|
// this stage.
|
|
|
|
static void ResetAllMBInfo(VP8Encoder* const enc) {
|
|
int n;
|
|
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
|
DefaultMBInfo(&enc->mb_info_[n]);
|
|
}
|
|
// Default susceptibilities.
|
|
enc->dqm_[0].alpha_ = 0;
|
|
enc->dqm_[0].beta_ = 0;
|
|
// Note: we can't compute this alpha_ / uv_alpha_.
|
|
WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
|
|
}
|
|
|
|
int VP8EncAnalyze(VP8Encoder* const enc) {
|
|
int ok = 1;
|
|
const int do_segments =
|
|
enc->config_->emulate_jpeg_size || // We need the complexity evaluation.
|
|
(enc->segment_hdr_.num_segments_ > 1) ||
|
|
(enc->method_ == 0); // for method 0, we need preds_[] to be filled.
|
|
enc->alpha_ = 0;
|
|
enc->uv_alpha_ = 0;
|
|
if (do_segments) {
|
|
int alphas[MAX_ALPHA + 1] = { 0 };
|
|
VP8EncIterator it;
|
|
|
|
VP8IteratorInit(enc, &it);
|
|
do {
|
|
VP8IteratorImport(&it);
|
|
MBAnalyze(&it, alphas, &enc->alpha_, &enc->uv_alpha_);
|
|
ok = VP8IteratorProgress(&it, 20);
|
|
// Let's pretend we have perfect lossless reconstruction.
|
|
} while (ok && VP8IteratorNext(&it, it.yuv_in_));
|
|
enc->alpha_ /= enc->mb_w_ * enc->mb_h_;
|
|
enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
|
|
if (ok) AssignSegments(enc, alphas);
|
|
} else { // Use only one default segment.
|
|
ResetAllMBInfo(enc);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
} // extern "C"
|
|
#endif
|