opencv/3rdparty/include/flann/flann.hpp

247 lines
7.1 KiB
C++

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_HPP_
#define FLANN_HPP_
#include <vector>
#include <string>
#include "constants.h"
#include "common.h"
#include "matrix.h"
#include "flann.h"
namespace flann
{
class NNIndex;
class IndexFactory
{
public:
virtual ~IndexFactory() {}
virtual NNIndex* createIndex(const Matrix<float>& dataset) const = 0;
};
struct IndexParams : public IndexFactory {
protected:
IndexParams() {};
public:
static IndexParams* createFromParameters(const FLANNParameters& p);
void fromParameters(const FLANNParameters&) {};
void toParameters(FLANNParameters&) { };
};
struct LinearIndexParams : public IndexParams {
LinearIndexParams() {};
NNIndex* createIndex(const Matrix<float>& dataset) const;
};
struct KDTreeIndexParams : public IndexParams {
KDTreeIndexParams(int trees_ = 4) : trees(trees_) {};
int trees; // number of randomized trees to use (for kdtree)
NNIndex* createIndex(const Matrix<float>& dataset) const;
void fromParameters(const FLANNParameters& p)
{
trees = p.trees;
}
void toParameters(FLANNParameters& p)
{
p.algorithm = KDTREE;
p.trees = trees;
};
};
struct KMeansIndexParams : public IndexParams {
KMeansIndexParams(int branching_ = 32, int iterations_ = 11,
flann_centers_init_t centers_init_ = CENTERS_RANDOM, float cb_index_ = 0.2 ) :
branching(branching_),
iterations(iterations_),
centers_init(centers_init_),
cb_index(cb_index_) {};
int branching; // branching factor (for kmeans tree)
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
float cb_index; // cluster boundary index. Used when searching the kmeans tree
NNIndex* createIndex(const Matrix<float>& dataset) const;
void fromParameters(const FLANNParameters& p)
{
branching = p.branching;
iterations = p.iterations;
centers_init = p.centers_init;
cb_index = p.cb_index;
}
void toParameters(FLANNParameters& p)
{
p.algorithm = KMEANS;
p.branching = branching;
p.iterations = iterations;
p.centers_init = centers_init;
p.cb_index = cb_index;
};
};
struct CompositeIndexParams : public IndexParams {
CompositeIndexParams(int trees_ = 4, int branching_ = 32, int iterations_ = 11,
flann_centers_init_t centers_init_ = CENTERS_RANDOM, float cb_index_ = 0.2 ) :
trees(trees_),
branching(branching_),
iterations(iterations_),
centers_init(centers_init_),
cb_index(cb_index_) {};
int trees; // number of randomized trees to use (for kdtree)
int branching; // branching factor (for kmeans tree)
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
float cb_index; // cluster boundary index. Used when searching the kmeans tree
NNIndex* createIndex(const Matrix<float>& dataset) const;
void fromParameters(const FLANNParameters& p)
{
trees = p.trees;
branching = p.branching;
iterations = p.iterations;
centers_init = p.centers_init;
cb_index = p.cb_index;
}
void toParameters(FLANNParameters& p)
{
p.algorithm = COMPOSITE;
p.trees = trees;
p.branching = branching;
p.iterations = iterations;
p.centers_init = centers_init;
p.cb_index = cb_index;
};
};
struct AutotunedIndexParams : public IndexParams {
AutotunedIndexParams( float target_precision_ = 0.9, float build_weight_ = 0.01,
float memory_weight_ = 0, float sample_fraction_ = 0.1) :
target_precision(target_precision_),
build_weight(build_weight_),
memory_weight(memory_weight_),
sample_fraction(sample_fraction_) {};
float target_precision; // precision desired (used for autotuning, -1 otherwise)
float build_weight; // build tree time weighting factor
float memory_weight; // index memory weighting factor
float sample_fraction; // what fraction of the dataset to use for autotuning
NNIndex* createIndex(const Matrix<float>& dataset) const;
void fromParameters(const FLANNParameters& p)
{
target_precision = p.target_precision;
build_weight = p.build_weight;
memory_weight = p.memory_weight;
sample_fraction = p.sample_fraction;
}
void toParameters(FLANNParameters& p)
{
p.algorithm = AUTOTUNED;
p.target_precision = target_precision;
p.build_weight = build_weight;
p.memory_weight = memory_weight;
p.sample_fraction = sample_fraction;
};
};
struct SavedIndexParams : public IndexParams {
SavedIndexParams() {
throw FLANNException("I don't know which index to load");
}
SavedIndexParams(std::string filename_) : filename(filename_) {}
std::string filename; // filename of the stored index
NNIndex* createIndex(const Matrix<float>& dataset) const;
};
struct SearchParams {
SearchParams(int checks_ = 32) :
checks(checks_) {};
int checks;
};
class Index {
NNIndex* nnIndex;
public:
Index(const Matrix<float>& features, const IndexParams& params);
~Index();
void knnSearch(const Matrix<float>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params);
int radiusSearch(const Matrix<float>& query, Matrix<int> indices, Matrix<float> dists, float radius, const SearchParams& params);
void save(std::string filename);
int veclen() const;
int size() const;
};
int hierarchicalClustering(const Matrix<float>& features, Matrix<float>& centers, const KMeansIndexParams& params);
}
#endif /* FLANN_HPP_ */