opencv/modules/photo/src/inpaint.cpp
2017-09-08 12:22:12 +03:00

853 lines
34 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */
#include "precomp.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/photo/photo_c.h"
#undef CV_MAT_ELEM_PTR_FAST
#define CV_MAT_ELEM_PTR_FAST( mat, row, col, pix_size ) \
((mat).data.ptr + (size_t)(mat).step*(row) + (pix_size)*(col))
inline float
min4( float a, float b, float c, float d )
{
a = MIN(a,b);
c = MIN(c,d);
return MIN(a,c);
}
#define CV_MAT_3COLOR_ELEM(img,type,y,x,c) CV_MAT_ELEM(img,type,y,(x)*3+(c))
#define KNOWN 0 //known outside narrow band
#define BAND 1 //narrow band (known)
#define INSIDE 2 //unknown
#define CHANGE 3 //servise
typedef struct CvHeapElem
{
float T;
int i,j;
struct CvHeapElem* prev;
struct CvHeapElem* next;
}
CvHeapElem;
class CvPriorityQueueFloat
{
private:
CvPriorityQueueFloat(const CvPriorityQueueFloat & ); // copy disabled
CvPriorityQueueFloat& operator=(const CvPriorityQueueFloat &); // assign disabled
protected:
CvHeapElem *mem,*empty,*head,*tail;
int num,in;
public:
bool Init( const CvMat* f )
{
int i,j;
for( i = num = 0; i < f->rows; i++ )
{
for( j = 0; j < f->cols; j++ )
num += CV_MAT_ELEM(*f,uchar,i,j)!=0;
}
if (num<=0) return false;
mem = (CvHeapElem*)cvAlloc((num+2)*sizeof(CvHeapElem));
if (mem==NULL) return false;
head = mem;
head->i = head->j = -1;
head->prev = NULL;
head->next = mem+1;
head->T = -FLT_MAX;
empty = mem+1;
for (i=1; i<=num; i++) {
mem[i].prev = mem+i-1;
mem[i].next = mem+i+1;
mem[i].i = -1;
mem[i].T = FLT_MAX;
}
tail = mem+i;
tail->i = tail->j = -1;
tail->prev = mem+i-1;
tail->next = NULL;
tail->T = FLT_MAX;
return true;
}
bool Add(const CvMat* f) {
int i,j;
for (i=0; i<f->rows; i++) {
for (j=0; j<f->cols; j++) {
if (CV_MAT_ELEM(*f,uchar,i,j)!=0) {
if (!Push(i,j,0)) return false;
}
}
}
return true;
}
bool Push(int i, int j, float T) {
CvHeapElem *tmp=empty,*add=empty;
if (empty==tail) return false;
while (tmp->prev->T>T) tmp = tmp->prev;
if (tmp!=empty) {
add->prev->next = add->next;
add->next->prev = add->prev;
empty = add->next;
add->prev = tmp->prev;
add->next = tmp;
add->prev->next = add;
add->next->prev = add;
} else {
empty = empty->next;
}
add->i = i;
add->j = j;
add->T = T;
in++;
// printf("push i %3d j %3d T %12.4e in %4d\n",i,j,T,in);
return true;
}
bool Pop(int *i, int *j) {
CvHeapElem *tmp=head->next;
if (empty==tmp) return false;
*i = tmp->i;
*j = tmp->j;
tmp->prev->next = tmp->next;
tmp->next->prev = tmp->prev;
tmp->prev = empty->prev;
tmp->next = empty;
tmp->prev->next = tmp;
tmp->next->prev = tmp;
empty = tmp;
in--;
// printf("pop i %3d j %3d T %12.4e in %4d\n",tmp->i,tmp->j,tmp->T,in);
return true;
}
bool Pop(int *i, int *j, float *T) {
CvHeapElem *tmp=head->next;
if (empty==tmp) return false;
*i = tmp->i;
*j = tmp->j;
*T = tmp->T;
tmp->prev->next = tmp->next;
tmp->next->prev = tmp->prev;
tmp->prev = empty->prev;
tmp->next = empty;
tmp->prev->next = tmp;
tmp->next->prev = tmp;
empty = tmp;
in--;
// printf("pop i %3d j %3d T %12.4e in %4d\n",tmp->i,tmp->j,tmp->T,in);
return true;
}
CvPriorityQueueFloat(void) {
num=in=0;
mem=empty=head=tail=NULL;
}
~CvPriorityQueueFloat(void)
{
cvFree( &mem );
}
};
inline float VectorScalMult(CvPoint2D32f v1,CvPoint2D32f v2) {
return v1.x*v2.x+v1.y*v2.y;
}
inline float VectorLength(CvPoint2D32f v1) {
return v1.x*v1.x+v1.y*v1.y;
}
///////////////////////////////////////////////////////////////////////////////////////////
//HEAP::iterator Heap_Iterator;
//HEAP Heap;
static float FastMarching_solve(int i1,int j1,int i2,int j2, const CvMat* f, const CvMat* t)
{
double sol, a11, a22, m12;
a11=CV_MAT_ELEM(*t,float,i1,j1);
a22=CV_MAT_ELEM(*t,float,i2,j2);
m12=MIN(a11,a22);
if( CV_MAT_ELEM(*f,uchar,i1,j1) != INSIDE )
if( CV_MAT_ELEM(*f,uchar,i2,j2) != INSIDE )
if( fabs(a11-a22) >= 1.0 )
sol = 1+m12;
else
sol = (a11+a22+sqrt((double)(2-(a11-a22)*(a11-a22))))*0.5;
else
sol = 1+a11;
else if( CV_MAT_ELEM(*f,uchar,i2,j2) != INSIDE )
sol = 1+a22;
else
sol = 1+m12;
return (float)sol;
}
/////////////////////////////////////////////////////////////////////////////////////
static void
icvCalcFMM(const CvMat *f, CvMat *t, CvPriorityQueueFloat *Heap, bool negate) {
int i, j, ii = 0, jj = 0, q;
float dist;
while (Heap->Pop(&ii,&jj)) {
unsigned known=(negate)?CHANGE:KNOWN;
CV_MAT_ELEM(*f,uchar,ii,jj) = (uchar)known;
for (q=0; q<4; q++) {
i=0; j=0;
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else {i=ii; j=jj+1;}
if ((i<=0)||(j<=0)||(i>f->rows)||(j>f->cols)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
if (negate) {
for (i=0; i<f->rows; i++) {
for(j=0; j<f->cols; j++) {
if (CV_MAT_ELEM(*f,uchar,i,j) == CHANGE) {
CV_MAT_ELEM(*f,uchar,i,j) = KNOWN;
CV_MAT_ELEM(*t,float,i,j) = -CV_MAT_ELEM(*t,float,i,j);
}
}
}
}
}
template <typename data_type>
static void
icvTeleaInpaintFMM(const CvMat *f, CvMat *t, CvMat *out, int range, CvPriorityQueueFloat *Heap ) {
int i = 0, j = 0, ii = 0, jj = 0, k, l, q, color = 0;
float dist;
if (CV_MAT_CN(out->type)==3) {
while (Heap->Pop(&ii,&jj)) {
CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN;
for(q=0; q<4; q++) {
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else if(q==3) {i=ii; j=jj+1;}
if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
for (color=0; color<=2; color++) {
CvPoint2D32f gradI,gradT,r;
float Ia=0,Jx=0,Jy=0,s=1.0e-20f,w,dst,lev,dir,sat;
if (CV_MAT_ELEM(*f,uchar,i,j+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j-1)))*0.5f;
} else {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i,j-1)));
} else {
gradT.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,i+1,j)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i-1,j)))*0.5f;
} else {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i,j)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i-1,j)));
} else {
gradT.y=0;
}
}
for (k=i-range; k<=i+range; k++) {
int km=k-1+(k==1),kp=k-1-(k==t->rows-2);
for (l=j-range; l<=j+range; l++) {
int lm=l-1+(l==1),lp=l-1-(l==t->cols-2);
if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) {
if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&&
((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) {
r.y = (float)(i-k);
r.x = (float)(j-l);
dst = (float)(1./(VectorLength(r)*sqrt((double)VectorLength(r))));
lev = (float)(1./(1+fabs(CV_MAT_ELEM(*t,float,k,l)-CV_MAT_ELEM(*t,float,i,j))));
dir=VectorScalMult(r,gradT);
if (fabs(dir)<=0.01) dir=0.000001f;
w = (float)fabs(dst*lev*dir);
if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)))*2.0f;
} else {
gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)));
} else {
gradI.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)))*2.0f;
} else {
gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)));
} else {
gradI.y=0;
}
}
Ia += (float)w * (float)(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color));
Jx -= (float)w * (float)(gradI.x*r.x);
Jy -= (float)w * (float)(gradI.y*r.y);
s += w;
}
}
}
}
sat = (float)((Ia/s+(Jx+Jy)/(sqrt(Jx*Jx+Jy*Jy)+1.0e-20f)+0.5f));
{
CV_MAT_3COLOR_ELEM(*out,uchar,i-1,j-1,color) = cv::saturate_cast<uchar>(sat);
}
}
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
} else if (CV_MAT_CN(out->type)==1) {
while (Heap->Pop(&ii,&jj)) {
CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN;
for(q=0; q<4; q++) {
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else if(q==3) {i=ii; j=jj+1;}
if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
for (color=0; color<=0; color++) {
CvPoint2D32f gradI,gradT,r;
float Ia=0,Jx=0,Jy=0,s=1.0e-20f,w,dst,lev,dir,sat;
if (CV_MAT_ELEM(*f,uchar,i,j+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j-1)))*0.5f;
} else {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) {
gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i,j-1)));
} else {
gradT.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,i+1,j)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i-1,j)))*0.5f;
} else {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i,j)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) {
gradT.y=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i-1,j)));
} else {
gradT.y=0;
}
}
for (k=i-range; k<=i+range; k++) {
int km=k-1+(k==1),kp=k-1-(k==t->rows-2);
for (l=j-range; l<=j+range; l++) {
int lm=l-1+(l==1),lp=l-1-(l==t->cols-2);
if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) {
if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&&
((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) {
r.y = (float)(i-k);
r.x = (float)(j-l);
dst = (float)(1./(VectorLength(r)*sqrt(VectorLength(r))));
lev = (float)(1./(1+fabs(CV_MAT_ELEM(*t,float,k,l)-CV_MAT_ELEM(*t,float,i,j))));
dir=VectorScalMult(r,gradT);
if (fabs(dir)<=0.01) dir=0.000001f;
w = (float)fabs(dst*lev*dir);
if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.x=(float)((CV_MAT_ELEM(*out,data_type,km,lp+1)-CV_MAT_ELEM(*out,data_type,km,lm-1)))*2.0f;
} else {
gradI.x=(float)((CV_MAT_ELEM(*out,data_type,km,lp+1)-CV_MAT_ELEM(*out,data_type,km,lm)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.x=(float)((CV_MAT_ELEM(*out,data_type,km,lp)-CV_MAT_ELEM(*out,data_type,km,lm-1)));
} else {
gradI.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.y=(float)((CV_MAT_ELEM(*out,data_type,kp+1,lm)-CV_MAT_ELEM(*out,data_type,km-1,lm)))*2.0f;
} else {
gradI.y=(float)((CV_MAT_ELEM(*out,data_type,kp+1,lm)-CV_MAT_ELEM(*out,data_type,km,lm)));
}
} else {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.y=(float)((CV_MAT_ELEM(*out,data_type,kp,lm)-CV_MAT_ELEM(*out,data_type,km-1,lm)));
} else {
gradI.y=0;
}
}
Ia += (float)w * (float)(CV_MAT_ELEM(*out,data_type,km,lm));
Jx -= (float)w * (float)(gradI.x*r.x);
Jy -= (float)w * (float)(gradI.y*r.y);
s += w;
}
}
}
}
sat = (float)((Ia/s+(Jx+Jy)/(sqrt(Jx*Jx+Jy*Jy)+1.0e-20f)+0.5f));
{
CV_MAT_ELEM(*out,data_type,i-1,j-1) = cv::saturate_cast<data_type>(sat);
}
}
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
}
}
template <typename data_type>
static void
icvNSInpaintFMM(const CvMat *f, CvMat *t, CvMat *out, int range, CvPriorityQueueFloat *Heap) {
int i = 0, j = 0, ii = 0, jj = 0, k, l, q, color = 0;
float dist;
if (CV_MAT_CN(out->type)==3) {
while (Heap->Pop(&ii,&jj)) {
CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN;
for(q=0; q<4; q++) {
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else if(q==3) {i=ii; j=jj+1;}
if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
for (color=0; color<=2; color++) {
CvPoint2D32f gradI,r;
float Ia=0,s=1.0e-20f,w,dst,dir;
for (k=i-range; k<=i+range; k++) {
int km=k-1+(k==1),kp=k-1-(k==f->rows-2);
for (l=j-range; l<=j+range; l++) {
int lm=l-1+(l==1),lp=l-1-(l==f->cols-2);
if (k>0&&l>0&&k<f->rows-1&&l<f->cols-1) {
if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&&
((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) {
r.y=(float)(k-i);
r.x=(float)(l-j);
dst = 1/(VectorLength(r)*VectorLength(r)+1);
if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color))+
abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)));
} else {
gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)))*2.0f;
}
} else {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)))*2.0f;
} else {
gradI.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color))+
abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)));
} else {
gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)))*2.0f;
}
} else {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)))*2.0f;
} else {
gradI.y=0;
}
}
gradI.x=-gradI.x;
dir=VectorScalMult(r,gradI);
if (fabs(dir)<=0.01) {
dir=0.000001f;
} else {
dir = (float)fabs(VectorScalMult(r,gradI)/sqrt(VectorLength(r)*VectorLength(gradI)));
}
w = dst*dir;
Ia += (float)w * (float)(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color));
s += w;
}
}
}
}
CV_MAT_3COLOR_ELEM(*out,uchar,i-1,j-1,color) = cv::saturate_cast<uchar>((double)Ia/s);
}
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
} else if (CV_MAT_CN(out->type)==1) {
while (Heap->Pop(&ii,&jj)) {
CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN;
for(q=0; q<4; q++) {
if (q==0) {i=ii-1; j=jj;}
else if(q==1) {i=ii; j=jj-1;}
else if(q==2) {i=ii+1; j=jj;}
else if(q==3) {i=ii; j=jj+1;}
if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue;
if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) {
dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t),
FastMarching_solve(i+1,j,i,j-1,f,t),
FastMarching_solve(i-1,j,i,j+1,f,t),
FastMarching_solve(i+1,j,i,j+1,f,t));
CV_MAT_ELEM(*t,float,i,j) = dist;
{
CvPoint2D32f gradI,r;
float Ia=0,s=1.0e-20f,w,dst,dir;
for (k=i-range; k<=i+range; k++) {
int km=k-1+(k==1),kp=k-1-(k==t->rows-2);
for (l=j-range; l<=j+range; l++) {
int lm=l-1+(l==1),lp=l-1-(l==t->cols-2);
if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) {
if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&&
((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) {
r.y=(float)(i-k);
r.x=(float)(j-l);
dst = 1/(VectorLength(r)*VectorLength(r)+1);
if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.x=(float)(std::abs(CV_MAT_ELEM(*out,data_type,kp+1,lm)-CV_MAT_ELEM(*out,data_type,kp,lm))+
std::abs(CV_MAT_ELEM(*out,data_type,kp,lm)-CV_MAT_ELEM(*out,data_type,km-1,lm)));
} else {
gradI.x=(float)(std::abs(CV_MAT_ELEM(*out,data_type,kp+1,lm)-CV_MAT_ELEM(*out,data_type,kp,lm)))*2.0f;
}
} else {
if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) {
gradI.x=(float)(std::abs(CV_MAT_ELEM(*out,data_type,kp,lm)-CV_MAT_ELEM(*out,data_type,km-1,lm)))*2.0f;
} else {
gradI.x=0;
}
}
if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.y=(float)(std::abs(CV_MAT_ELEM(*out,data_type,km,lp+1)-CV_MAT_ELEM(*out,data_type,km,lm))+
std::abs(CV_MAT_ELEM(*out,data_type,km,lm)-CV_MAT_ELEM(*out,data_type,km,lm-1)));
} else {
gradI.y=(float)(std::abs(CV_MAT_ELEM(*out,data_type,km,lp+1)-CV_MAT_ELEM(*out,data_type,km,lm)))*2.0f;
}
} else {
if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) {
gradI.y=(float)(std::abs(CV_MAT_ELEM(*out,data_type,km,lm)-CV_MAT_ELEM(*out,data_type,km,lm-1)))*2.0f;
} else {
gradI.y=0;
}
}
gradI.x=-gradI.x;
dir=VectorScalMult(r,gradI);
if (fabs(dir)<=0.01) {
dir=0.000001f;
} else {
dir = (float)fabs(VectorScalMult(r,gradI)/sqrt(VectorLength(r)*VectorLength(gradI)));
}
w = dst*dir;
Ia += (float)w * (float)(CV_MAT_ELEM(*out,data_type,km,lm));
s += w;
}
}
}
}
CV_MAT_ELEM(*out,data_type,i-1,j-1) = cv::saturate_cast<data_type>((double)Ia/s);
}
CV_MAT_ELEM(*f,uchar,i,j) = BAND;
Heap->Push(i,j,dist);
}
}
}
}
}
#define SET_BORDER1_C1(image,type,value) {\
int i,j;\
for(j=0; j<image->cols; j++) {\
CV_MAT_ELEM(*image,type,0,j) = value;\
}\
for (i=1; i<image->rows-1; i++) {\
CV_MAT_ELEM(*image,type,i,0) = CV_MAT_ELEM(*image,type,i,image->cols-1) = value;\
}\
for(j=0; j<image->cols; j++) {\
CV_MAT_ELEM(*image,type,erows-1,j) = value;\
}\
}
#define COPY_MASK_BORDER1_C1(src,dst,type) {\
int i,j;\
for (i=0; i<src->rows; i++) {\
for(j=0; j<src->cols; j++) {\
if (CV_MAT_ELEM(*src,type,i,j)!=0)\
CV_MAT_ELEM(*dst,type,i+1,j+1) = INSIDE;\
}\
}\
}
namespace cv {
template<> void cv::DefaultDeleter<IplConvKernel>::operator ()(IplConvKernel* obj) const
{
cvReleaseStructuringElement(&obj);
}
}
void
cvInpaint( const CvArr* _input_img, const CvArr* _inpaint_mask, CvArr* _output_img,
double inpaintRange, int flags )
{
cv::Ptr<CvMat> mask, band, f, t, out;
cv::Ptr<CvPriorityQueueFloat> Heap, Out;
cv::Ptr<IplConvKernel> el_cross, el_range;
CvMat input_hdr, mask_hdr, output_hdr;
CvMat* input_img, *inpaint_mask, *output_img;
int range=cvRound(inpaintRange);
int erows, ecols;
input_img = cvGetMat( _input_img, &input_hdr );
inpaint_mask = cvGetMat( _inpaint_mask, &mask_hdr );
output_img = cvGetMat( _output_img, &output_hdr );
if( !CV_ARE_SIZES_EQ(input_img,output_img) || !CV_ARE_SIZES_EQ(input_img,inpaint_mask))
CV_Error( CV_StsUnmatchedSizes, "All the input and output images must have the same size" );
if( (CV_MAT_TYPE(input_img->type) != CV_8U &&
CV_MAT_TYPE(input_img->type) != CV_16U &&
CV_MAT_TYPE(input_img->type) != CV_32F &&
CV_MAT_TYPE(input_img->type) != CV_8UC3) ||
!CV_ARE_TYPES_EQ(input_img,output_img) )
CV_Error( CV_StsUnsupportedFormat,
"8-bit, 16-bit unsigned or 32-bit float 1-channel and 8-bit 3-channel input/output images are supported" );
if( CV_MAT_TYPE(inpaint_mask->type) != CV_8UC1 )
CV_Error( CV_StsUnsupportedFormat, "The mask must be 8-bit 1-channel image" );
range = MAX(range,1);
range = MIN(range,100);
ecols = input_img->cols + 2;
erows = input_img->rows + 2;
f.reset(cvCreateMat(erows, ecols, CV_8UC1));
t.reset(cvCreateMat(erows, ecols, CV_32FC1));
band.reset(cvCreateMat(erows, ecols, CV_8UC1));
mask.reset(cvCreateMat(erows, ecols, CV_8UC1));
el_cross.reset(cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_CROSS,NULL));
cvCopy( input_img, output_img );
cvSet(mask,cvScalar(KNOWN,0,0,0));
COPY_MASK_BORDER1_C1(inpaint_mask,mask,uchar);
SET_BORDER1_C1(mask,uchar,0);
cvSet(f,cvScalar(KNOWN,0,0,0));
cvSet(t,cvScalar(1.0e6f,0,0,0));
cvDilate(mask,band,el_cross,1); // image with narrow band
Heap=cv::makePtr<CvPriorityQueueFloat>();
if (!Heap->Init(band))
return;
cvSub(band,mask,band,NULL);
SET_BORDER1_C1(band,uchar,0);
if (!Heap->Add(band))
return;
cvSet(f,cvScalar(BAND,0,0,0),band);
cvSet(f,cvScalar(INSIDE,0,0,0),mask);
cvSet(t,cvScalar(0,0,0,0),band);
if( flags == cv::INPAINT_TELEA )
{
out.reset(cvCreateMat(erows, ecols, CV_8UC1));
el_range.reset(cvCreateStructuringElementEx(2*range+1,2*range+1,
range,range,CV_SHAPE_RECT,NULL));
cvDilate(mask,out,el_range,1);
cvSub(out,mask,out,NULL);
Out=cv::makePtr<CvPriorityQueueFloat>();
if (!Out->Init(out))
return;
if (!Out->Add(band))
return;
cvSub(out,band,out,NULL);
SET_BORDER1_C1(out,uchar,0);
icvCalcFMM(out,t,Out,true);
switch(CV_MAT_DEPTH(output_img->type))
{
case CV_8U:
icvTeleaInpaintFMM<uchar>(mask,t,output_img,range,Heap);
break;
case CV_16U:
icvTeleaInpaintFMM<ushort>(mask,t,output_img,range,Heap);
break;
case CV_32F:
icvTeleaInpaintFMM<float>(mask,t,output_img,range,Heap);
break;
default:
CV_Error( cv::Error::StsBadArg, "Unsupportedformat of the input image" );
}
}
else if (flags == cv::INPAINT_NS) {
switch(CV_MAT_DEPTH(output_img->type))
{
case CV_8U:
icvNSInpaintFMM<uchar>(mask,t,output_img,range,Heap);
break;
case CV_16U:
icvNSInpaintFMM<ushort>(mask,t,output_img,range,Heap);
break;
case CV_32F:
icvNSInpaintFMM<float>(mask,t,output_img,range,Heap);
break;
default:
CV_Error( cv::Error::StsBadArg, "Unsupported format of the input image" );
}
} else {
CV_Error( cv::Error::StsBadArg, "The flags argument must be one of CV_INPAINT_TELEA or CV_INPAINT_NS" );
}
}
void cv::inpaint( InputArray _src, InputArray _mask, OutputArray _dst,
double inpaintRange, int flags )
{
CV_INSTRUMENT_REGION()
Mat src = _src.getMat(), mask = _mask.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
CvMat c_src = src, c_mask = mask, c_dst = dst;
cvInpaint( &c_src, &c_mask, &c_dst, inpaintRange, flags );
}