opencv/modules/gapi/src/compiler/gislandmodel.cpp
Pinaev Danil 5e3a7ac8a7 Merge pull request #16031 from aDanPin:dm/streaming_auto_meta
G-API-NG/Streaming: don't require explicit metadata in compileStreaming()

* First probably working version
Hardcode gose to setSource() :)

* Pre final version of move metadata declaration from compileStreaming() to setSource().

* G-API-NG/Streaming: recovered the existing Streaming functionality

- The auto-meta test is disabling since it crashes.
- Restored .gitignore

* G-API-NG/Streaming: Made the meta-less compileStreaming() work

- Works fine even with OpenCV backend;
- Fluid doesn't support such kind of compilation so far - to be fixed

* G-API-NG/Streaming: Fix Fluid to support meta-less compilation

- Introduced a notion of metadata-sensitive passes and slightly
  refactored GCompiler and GFluidBackend to support that
- Fixed a TwoVideoSourcesFail test on streaming

* Add three smoke streaming tests to gapi_streaming_tests.
All three teste run pipeline with two different input sets
1) SmokeTest_Two_Const_Mats test run pipeline with two const Mats
2) SmokeTest_One_Video_One_Const_Scalar test run pipleline with Mat(video source) and const Scalar
3) SmokeTest_One_Video_One_Const_Vector test run pipeline with Mat(video source) and const Vector
 # Please enter the commit message for your changes. Lines starting

* style fix

* Some review stuff

* Some review stuff
2019-12-03 19:14:13 +03:00

324 lines
10 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#include "precomp.hpp"
#include <sstream>
#include <unordered_set>
#include <unordered_map>
#include <ade/util/checked_cast.hpp>
#include "api/gbackend_priv.hpp" // GBackend::Priv().compile()
#include "compiler/gmodel.hpp"
#include "compiler/gislandmodel.hpp"
#include "compiler/gmodel.hpp"
#include "logger.hpp" // GAPI_LOG
namespace cv { namespace gimpl {
GIsland::GIsland(const gapi::GBackend &bknd,
ade::NodeHandle op,
util::optional<std::string> &&user_tag)
: m_backend(bknd)
, m_user_tag(std::move(user_tag))
{
m_all.insert(op);
m_in_ops.insert(op);
m_out_ops.insert(op);
}
// _ because of gcc4.8 wanings on ARM
GIsland::GIsland(const gapi::GBackend &_bknd,
node_set &&_all,
node_set &&_in_ops,
node_set &&_out_ops,
util::optional<std::string> &&_user_tag)
: m_backend(_bknd)
, m_all(std::move(_all))
, m_in_ops(std::move(_in_ops))
, m_out_ops(std::move(_out_ops))
, m_user_tag(std::move(_user_tag))
{
}
const GIsland::node_set& GIsland::contents() const
{
return m_all;
}
const GIsland::node_set& GIsland::in_ops() const
{
return m_in_ops;
}
const GIsland::node_set& GIsland::out_ops() const
{
return m_out_ops;
}
gapi::GBackend GIsland::backend() const
{
return m_backend;
}
bool GIsland::is_user_specified() const
{
return m_user_tag.has_value();
}
void GIsland::debug() const
{
std::stringstream stream;
stream << name() << " {{\n input ops: ";
for (const auto& nh : m_in_ops) stream << nh << "; ";
stream << "\n output ops: ";
for (const auto& nh : m_out_ops) stream << nh << "; ";
stream << "\n contents: ";
for (const auto& nh : m_all) stream << nh << "; ";
stream << "\n}}" << std::endl;
GAPI_LOG_INFO(NULL, stream.str());
}
GIsland::node_set GIsland::consumers(const ade::Graph &g,
const ade::NodeHandle &slot_nh) const
{
GIslandModel::ConstGraph gim(g);
auto data_nh = gim.metadata(slot_nh).get<DataSlot>().original_data_node;
GIsland::node_set result;
for (const auto& in_op : m_in_ops)
{
auto it = std::find(in_op->inNodes().begin(),
in_op->inNodes().end(),
data_nh);
if (it != in_op->inNodes().end())
result.insert(in_op);
}
return result;
}
ade::NodeHandle GIsland::producer(const ade::Graph &g,
const ade::NodeHandle &slot_nh) const
{
GIslandModel::ConstGraph gim(g);
auto data_nh = gim.metadata(slot_nh).get<DataSlot>().original_data_node;
for (const auto& out_op : m_out_ops)
{
auto it = std::find(out_op->outNodes().begin(),
out_op->outNodes().end(),
data_nh);
if (it != out_op->outNodes().end())
return out_op;
}
// Consistency: A GIsland requested for producer() of slot_nh should
// always had the appropriate GModel node handle in its m_out_ops vector.
GAPI_Assert(false);
return ade::NodeHandle();
}
std::string GIsland::name() const
{
if (is_user_specified())
return m_user_tag.value();
std::stringstream ss;
ss << "island_#" << std::hex << static_cast<const void*>(this);
return ss.str();
}
void GIslandModel::generateInitial(GIslandModel::Graph &g,
const ade::Graph &src_graph)
{
const GModel::ConstGraph src_g(src_graph);
// Initially GIslandModel is a 1:1 projection from GModel:
// 1) Every GModel::OP becomes a separate GIslandModel::FusedIsland;
// 2) Every GModel::DATA becomes GIslandModel::DataSlot;
// 3) Single-operation FusedIslands are connected with DataSlots in the
// same way as OPs and DATA (edges with the same metadata)
using node_set = std::unordered_set
< ade::NodeHandle
, ade::HandleHasher<ade::Node>
>;
using node_map = std::unordered_map
< ade::NodeHandle
, ade::NodeHandle
, ade::HandleHasher<ade::Node>
>;
node_set all_operations;
node_map data_to_slot;
// First, list all operations and build create DataSlots in <g>
for (auto src_nh : src_g.nodes())
{
switch (src_g.metadata(src_nh).get<NodeType>().t)
{
case NodeType::OP: all_operations.insert(src_nh); break;
case NodeType::DATA: data_to_slot[src_nh] = mkSlotNode(g, src_nh); break;
default: GAPI_Assert(false); break;
}
} // for (src_g.nodes)
// Now put single-op islands and connect it with DataSlots
for (auto src_op_nh : all_operations)
{
auto nh = mkIslandNode(g, src_g.metadata(src_op_nh).get<Op>().backend, src_op_nh, src_graph);
for (auto in_edge : src_op_nh->inEdges())
{
auto src_data_nh = in_edge->srcNode();
auto isl_slot_nh = data_to_slot.at(src_data_nh);
g.link(isl_slot_nh, nh); // no other data stored yet
}
for (auto out_edge : src_op_nh->outEdges())
{
auto dst_data_nh = out_edge->dstNode();
auto isl_slot_nh = data_to_slot.at(dst_data_nh);
g.link(nh, isl_slot_nh);
}
} // for(all_operations)
}
ade::NodeHandle GIslandModel::mkSlotNode(Graph &g, const ade::NodeHandle &data_nh)
{
auto nh = g.createNode();
g.metadata(nh).set(DataSlot{data_nh});
g.metadata(nh).set(NodeKind{NodeKind::SLOT});
return nh;
}
ade::NodeHandle GIslandModel::mkIslandNode(Graph &g, const gapi::GBackend& bknd, const ade::NodeHandle &op_nh, const ade::Graph &orig_g)
{
const GModel::ConstGraph src_g(orig_g);
util::optional<std::string> user_tag;
if (src_g.metadata(op_nh).contains<Island>())
{
user_tag = util::make_optional(src_g.metadata(op_nh).get<Island>().island);
}
auto nh = g.createNode();
std::shared_ptr<GIsland> island(new GIsland(bknd, op_nh, std::move(user_tag)));
g.metadata(nh).set(FusedIsland{std::move(island)});
g.metadata(nh).set(NodeKind{NodeKind::ISLAND});
return nh;
}
ade::NodeHandle GIslandModel::mkIslandNode(Graph &g, std::shared_ptr<GIsland>&& isl)
{
ade::NodeHandle nh = g.createNode();
g.metadata(nh).set(cv::gimpl::NodeKind{cv::gimpl::NodeKind::ISLAND});
g.metadata(nh).set<cv::gimpl::FusedIsland>({std::move(isl)});
return nh;
}
ade::NodeHandle GIslandModel::mkEmitNode(Graph &g, std::size_t in_idx)
{
ade::NodeHandle nh = g.createNode();
g.metadata(nh).set(cv::gimpl::NodeKind{cv::gimpl::NodeKind::EMIT});
g.metadata(nh).set(cv::gimpl::Emitter{in_idx, {}});
return nh;
}
ade::NodeHandle GIslandModel::mkSinkNode(Graph &g, std::size_t out_idx)
{
ade::NodeHandle nh = g.createNode();
g.metadata(nh).set(cv::gimpl::NodeKind{cv::gimpl::NodeKind::SINK});
g.metadata(nh).set(cv::gimpl::Sink{out_idx});
return nh;
}
void GIslandModel::syncIslandTags(Graph &g, ade::Graph &orig_g)
{
GModel::Graph gm(orig_g);
for (auto nh : g.nodes())
{
if (NodeKind::ISLAND == g.metadata(nh).get<NodeKind>().k)
{
auto island = g.metadata(nh).get<FusedIsland>().object;
auto isl_tag = island->name();
for (const auto& orig_nh_inside : island->contents())
{
gm.metadata(orig_nh_inside).set(Island{isl_tag});
}
}
}
}
void GIslandModel::compileIslands(Graph &g, const ade::Graph &orig_g, const GCompileArgs &args)
{
GModel::ConstGraph gm(orig_g);
auto original_sorted = gm.metadata().get<ade::passes::TopologicalSortData>();
for (auto nh : g.nodes())
{
if (NodeKind::ISLAND == g.metadata(nh).get<NodeKind>().k)
{
auto nodes_to_data = [&](const ade::NodeHandle& dnh)
{
GAPI_Assert(g.metadata(dnh).get<NodeKind>().k == NodeKind::SLOT);
const auto& orig_data_nh = g.metadata(dnh).get<DataSlot>().original_data_node;
const auto& data = gm.metadata(orig_data_nh).get<Data>();
return data;
};
std::vector<cv::gimpl::Data> ins_data;
ade::util::transform(nh->inNodes(), std::back_inserter(ins_data), nodes_to_data);
std::vector<cv::gimpl::Data> outs_data;
ade::util::transform(nh->outNodes(), std::back_inserter(outs_data), nodes_to_data);
auto island_obj = g.metadata(nh).get<FusedIsland>().object;
auto island_ops = island_obj->contents();
std::vector<ade::NodeHandle> topo_sorted_list;
ade::util::copy_if(original_sorted.nodes(),
std::back_inserter(topo_sorted_list),
[&](ade::NodeHandle sorted_nh) {
return ade::util::contains(island_ops, sorted_nh);
});
auto island_exe = island_obj->backend().priv()
.compile(orig_g, args, topo_sorted_list, ins_data, outs_data);
GAPI_Assert(nullptr != island_exe);
g.metadata(nh).set(IslandExec{std::move(island_exe)});
}
}
g.metadata().set(IslandsCompiled{});
}
ade::NodeHandle GIslandModel::producerOf(const ConstGraph &g, ade::NodeHandle &data_nh)
{
for (auto nh : g.nodes())
{
// find a data slot...
if (NodeKind::SLOT == g.metadata(nh).get<NodeKind>().k)
{
// which is associated with the given data object...
if (data_nh == g.metadata(nh).get<DataSlot>().original_data_node)
{
// which probably has a produrer...
if (0u != nh->inNodes().size())
{
// ...then the answer is that producer
return nh->inNodes().front();
}
else return ade::NodeHandle(); // input data object?
// return empty to break the cycle
}
}
}
// No appropriate data slot found - probably, the object has been
// optimized out during fusion
return ade::NodeHandle();
}
} // namespace cv
} // namespace gimpl