opencv/modules/gpu/src/cuda/bgfg_gmg.cu
2013-04-08 17:25:15 +04:00

259 lines
12 KiB
Plaintext

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/vec_traits.hpp"
#include "opencv2/core/cuda/limits.hpp"
namespace cv { namespace gpu { namespace cuda {
namespace bgfg_gmg
{
__constant__ int c_width;
__constant__ int c_height;
__constant__ float c_minVal;
__constant__ float c_maxVal;
__constant__ int c_quantizationLevels;
__constant__ float c_backgroundPrior;
__constant__ float c_decisionThreshold;
__constant__ int c_maxFeatures;
__constant__ int c_numInitializationFrames;
void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior,
float decisionThreshold, int maxFeatures, int numInitializationFrames)
{
cudaSafeCall( cudaMemcpyToSymbol(c_width, &width, sizeof(width)) );
cudaSafeCall( cudaMemcpyToSymbol(c_height, &height, sizeof(height)) );
cudaSafeCall( cudaMemcpyToSymbol(c_minVal, &minVal, sizeof(minVal)) );
cudaSafeCall( cudaMemcpyToSymbol(c_maxVal, &maxVal, sizeof(maxVal)) );
cudaSafeCall( cudaMemcpyToSymbol(c_quantizationLevels, &quantizationLevels, sizeof(quantizationLevels)) );
cudaSafeCall( cudaMemcpyToSymbol(c_backgroundPrior, &backgroundPrior, sizeof(backgroundPrior)) );
cudaSafeCall( cudaMemcpyToSymbol(c_decisionThreshold, &decisionThreshold, sizeof(decisionThreshold)) );
cudaSafeCall( cudaMemcpyToSymbol(c_maxFeatures, &maxFeatures, sizeof(maxFeatures)) );
cudaSafeCall( cudaMemcpyToSymbol(c_numInitializationFrames, &numInitializationFrames, sizeof(numInitializationFrames)) );
}
__device__ float findFeature(const int color, const PtrStepi& colors, const PtrStepf& weights, const int x, const int y, const int nfeatures)
{
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height)
{
if (color == colors(fy, x))
return weights(fy, x);
}
// not in histogram, so return 0.
return 0.0f;
}
__device__ void normalizeHistogram(PtrStepf weights, const int x, const int y, const int nfeatures)
{
float total = 0.0f;
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height)
total += weights(fy, x);
if (total != 0.0f)
{
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height)
weights(fy, x) /= total;
}
}
__device__ bool insertFeature(const int color, const float weight, PtrStepi colors, PtrStepf weights, const int x, const int y, int& nfeatures)
{
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height)
{
if (color == colors(fy, x))
{
// feature in histogram
weights(fy, x) += weight;
return false;
}
}
if (nfeatures == c_maxFeatures)
{
// discard oldest feature
int idx = -1;
float minVal = numeric_limits<float>::max();
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height)
{
const float w = weights(fy, x);
if (w < minVal)
{
minVal = w;
idx = fy;
}
}
colors(idx, x) = color;
weights(idx, x) = weight;
return false;
}
colors(nfeatures * c_height + y, x) = color;
weights(nfeatures * c_height + y, x) = weight;
++nfeatures;
return true;
}
namespace detail
{
template <int cn> struct Quantization
{
template <typename T>
__device__ static int apply(const T& val)
{
int res = 0;
res |= static_cast<int>((val.x - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal));
res |= static_cast<int>((val.y - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)) << 8;
res |= static_cast<int>((val.z - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)) << 16;
return res;
}
};
template <> struct Quantization<1>
{
template <typename T>
__device__ static int apply(T val)
{
return static_cast<int>((val - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal));
}
};
}
template <typename T> struct Quantization : detail::Quantization<VecTraits<T>::cn> {};
template <typename SrcT>
__global__ void update(const PtrStep<SrcT> frame, PtrStepb fgmask, PtrStepi colors_, PtrStepf weights_, PtrStepi nfeatures_,
const int frameNum, const float learningRate, const bool updateBackgroundModel)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= c_width || y >= c_height)
return;
const SrcT pix = frame(y, x);
const int newFeatureColor = Quantization<SrcT>::apply(pix);
int nfeatures = nfeatures_(y, x);
if (frameNum >= c_numInitializationFrames)
{
// typical operation
const float weight = findFeature(newFeatureColor, colors_, weights_, x, y, nfeatures);
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
const float posterior = (weight * c_backgroundPrior) / (weight * c_backgroundPrior + (1.0f - weight) * (1.0f - c_backgroundPrior));
const bool isForeground = ((1.0f - posterior) > c_decisionThreshold);
fgmask(y, x) = (uchar)(-isForeground);
// update histogram.
if (updateBackgroundModel)
{
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height)
weights_(fy, x) *= 1.0f - learningRate;
bool inserted = insertFeature(newFeatureColor, learningRate, colors_, weights_, x, y, nfeatures);
if (inserted)
{
normalizeHistogram(weights_, x, y, nfeatures);
nfeatures_(y, x) = nfeatures;
}
}
}
else if (updateBackgroundModel)
{
// training-mode update
insertFeature(newFeatureColor, 1.0f, colors_, weights_, x, y, nfeatures);
if (frameNum == c_numInitializationFrames - 1)
normalizeHistogram(weights_, x, y, nfeatures);
}
}
template <typename SrcT>
void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(update<SrcT>, cudaFuncCachePreferL1) );
update<SrcT><<<grid, block, 0, stream>>>((PtrStepSz<SrcT>) frame, fgmask, colors, weights, nfeatures, frameNum, learningRate, updateBackgroundModel);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template void update_gpu<uchar >(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
template void update_gpu<uchar3 >(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
template void update_gpu<uchar4 >(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
template void update_gpu<ushort >(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
template void update_gpu<ushort3>(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
template void update_gpu<ushort4>(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
template void update_gpu<float >(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
template void update_gpu<float3 >(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
template void update_gpu<float4 >(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
}
}}}
#endif /* CUDA_DISABLER */