opencv/modules/gpu/src/cuda/calib3d.cu
2013-04-08 17:25:15 +04:00

194 lines
8.3 KiB
Plaintext

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/transform.hpp"
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/reduce.hpp"
namespace cv { namespace gpu { namespace cuda
{
#define SOLVE_PNP_RANSAC_MAX_NUM_ITERS 200
namespace transform_points
{
__constant__ float3 crot0;
__constant__ float3 crot1;
__constant__ float3 crot2;
__constant__ float3 ctransl;
struct TransformOp : unary_function<float3, float3>
{
__device__ __forceinline__ float3 operator()(const float3& p) const
{
return make_float3(
crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y,
crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z);
}
__device__ __forceinline__ TransformOp() {}
__device__ __forceinline__ TransformOp(const TransformOp&) {}
};
void call(const PtrStepSz<float3> src, const float* rot,
const float* transl, PtrStepSz<float3> dst,
cudaStream_t stream)
{
cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3));
cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3));
cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3));
cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3));
cv::gpu::cuda::transform(src, dst, TransformOp(), WithOutMask(), stream);
}
} // namespace transform_points
namespace project_points
{
__constant__ float3 crot0;
__constant__ float3 crot1;
__constant__ float3 crot2;
__constant__ float3 ctransl;
__constant__ float3 cproj0;
__constant__ float3 cproj1;
struct ProjectOp : unary_function<float3, float3>
{
__device__ __forceinline__ float2 operator()(const float3& p) const
{
// Rotate and translate in 3D
float3 t = make_float3(
crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y,
crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z);
// Project on 2D plane
return make_float2(
(cproj0.x * t.x + cproj0.y * t.y) / t.z + cproj0.z,
(cproj1.x * t.x + cproj1.y * t.y) / t.z + cproj1.z);
}
__device__ __forceinline__ ProjectOp() {}
__device__ __forceinline__ ProjectOp(const ProjectOp&) {}
};
void call(const PtrStepSz<float3> src, const float* rot,
const float* transl, const float* proj, PtrStepSz<float2> dst,
cudaStream_t stream)
{
cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3));
cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3));
cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3));
cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3));
cudaSafeCall(cudaMemcpyToSymbol(cproj0, proj, sizeof(float) * 3));
cudaSafeCall(cudaMemcpyToSymbol(cproj1, proj + 3, sizeof(float) * 3));
cv::gpu::cuda::transform(src, dst, ProjectOp(), WithOutMask(), stream);
}
} // namespace project_points
namespace solve_pnp_ransac
{
__constant__ float3 crot_matrices[SOLVE_PNP_RANSAC_MAX_NUM_ITERS * 3];
__constant__ float3 ctransl_vectors[SOLVE_PNP_RANSAC_MAX_NUM_ITERS];
int maxNumIters()
{
return SOLVE_PNP_RANSAC_MAX_NUM_ITERS;
}
__device__ __forceinline__ float sqr(float x)
{
return x * x;
}
template <int BLOCK_SIZE>
__global__ void computeHypothesisScoresKernel(
const int num_points, const float3* object, const float2* image,
const float dist_threshold, int* g_num_inliers)
{
const float3* const &rot_mat = crot_matrices + blockIdx.x * 3;
const float3 &transl_vec = ctransl_vectors[blockIdx.x];
int num_inliers = 0;
for (int i = threadIdx.x; i < num_points; i += blockDim.x)
{
float3 p = object[i];
p = make_float3(
rot_mat[0].x * p.x + rot_mat[0].y * p.y + rot_mat[0].z * p.z + transl_vec.x,
rot_mat[1].x * p.x + rot_mat[1].y * p.y + rot_mat[1].z * p.z + transl_vec.y,
rot_mat[2].x * p.x + rot_mat[2].y * p.y + rot_mat[2].z * p.z + transl_vec.z);
p.x /= p.z;
p.y /= p.z;
float2 image_p = image[i];
if (sqr(p.x - image_p.x) + sqr(p.y - image_p.y) < dist_threshold)
++num_inliers;
}
__shared__ int s_num_inliers[BLOCK_SIZE];
reduce<BLOCK_SIZE>(s_num_inliers, num_inliers, threadIdx.x, plus<int>());
if (threadIdx.x == 0)
g_num_inliers[blockIdx.x] = num_inliers;
}
void computeHypothesisScores(
const int num_hypotheses, const int num_points, const float* rot_matrices,
const float3* transl_vectors, const float3* object, const float2* image,
const float dist_threshold, int* hypothesis_scores)
{
cudaSafeCall(cudaMemcpyToSymbol(crot_matrices, rot_matrices, num_hypotheses * 3 * sizeof(float3)));
cudaSafeCall(cudaMemcpyToSymbol(ctransl_vectors, transl_vectors, num_hypotheses * sizeof(float3)));
dim3 threads(256);
dim3 grid(num_hypotheses);
computeHypothesisScoresKernel<256><<<grid, threads>>>(
num_points, object, image, dist_threshold, hypothesis_scores);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
} // namespace solvepnp_ransac
}}} // namespace cv { namespace gpu { namespace cuda
#endif /* CUDA_DISABLER */