mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
803 lines
22 KiB
C++
803 lines
22 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
#include "opencv2/core/mat.hpp"
|
|
#include "opencv2/core/types_c.h"
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv {
|
|
|
|
template<typename T1, typename T2> void
|
|
convertData_(const void* _from, void* _to, int cn)
|
|
{
|
|
const T1* from = (const T1*)_from;
|
|
T2* to = (T2*)_to;
|
|
if( cn == 1 )
|
|
*to = saturate_cast<T2>(*from);
|
|
else
|
|
for( int i = 0; i < cn; i++ )
|
|
to[i] = saturate_cast<T2>(from[i]);
|
|
}
|
|
|
|
template<typename T1, typename T2> void
|
|
convertScaleData_(const void* _from, void* _to, int cn, double alpha, double beta)
|
|
{
|
|
const T1* from = (const T1*)_from;
|
|
T2* to = (T2*)_to;
|
|
if( cn == 1 )
|
|
*to = saturate_cast<T2>(*from*alpha + beta);
|
|
else
|
|
for( int i = 0; i < cn; i++ )
|
|
to[i] = saturate_cast<T2>(from[i]*alpha + beta);
|
|
}
|
|
|
|
typedef void (*ConvertData)(const void* from, void* to, int cn);
|
|
typedef void (*ConvertScaleData)(const void* from, void* to, int cn, double alpha, double beta);
|
|
|
|
static ConvertData getConvertElem(int fromType, int toType)
|
|
{
|
|
static ConvertData tab[][8] =
|
|
{{ convertData_<uchar, uchar>, convertData_<uchar, schar>,
|
|
convertData_<uchar, ushort>, convertData_<uchar, short>,
|
|
convertData_<uchar, int>, convertData_<uchar, float>,
|
|
convertData_<uchar, double>, 0 },
|
|
|
|
{ convertData_<schar, uchar>, convertData_<schar, schar>,
|
|
convertData_<schar, ushort>, convertData_<schar, short>,
|
|
convertData_<schar, int>, convertData_<schar, float>,
|
|
convertData_<schar, double>, 0 },
|
|
|
|
{ convertData_<ushort, uchar>, convertData_<ushort, schar>,
|
|
convertData_<ushort, ushort>, convertData_<ushort, short>,
|
|
convertData_<ushort, int>, convertData_<ushort, float>,
|
|
convertData_<ushort, double>, 0 },
|
|
|
|
{ convertData_<short, uchar>, convertData_<short, schar>,
|
|
convertData_<short, ushort>, convertData_<short, short>,
|
|
convertData_<short, int>, convertData_<short, float>,
|
|
convertData_<short, double>, 0 },
|
|
|
|
{ convertData_<int, uchar>, convertData_<int, schar>,
|
|
convertData_<int, ushort>, convertData_<int, short>,
|
|
convertData_<int, int>, convertData_<int, float>,
|
|
convertData_<int, double>, 0 },
|
|
|
|
{ convertData_<float, uchar>, convertData_<float, schar>,
|
|
convertData_<float, ushort>, convertData_<float, short>,
|
|
convertData_<float, int>, convertData_<float, float>,
|
|
convertData_<float, double>, 0 },
|
|
|
|
{ convertData_<double, uchar>, convertData_<double, schar>,
|
|
convertData_<double, ushort>, convertData_<double, short>,
|
|
convertData_<double, int>, convertData_<double, float>,
|
|
convertData_<double, double>, 0 },
|
|
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0 }};
|
|
|
|
ConvertData func = tab[CV_MAT_DEPTH(fromType)][CV_MAT_DEPTH(toType)];
|
|
CV_Assert( func != 0 );
|
|
return func;
|
|
}
|
|
|
|
static ConvertScaleData getConvertScaleElem(int fromType, int toType)
|
|
{
|
|
static ConvertScaleData tab[][8] =
|
|
{{ convertScaleData_<uchar, uchar>, convertScaleData_<uchar, schar>,
|
|
convertScaleData_<uchar, ushort>, convertScaleData_<uchar, short>,
|
|
convertScaleData_<uchar, int>, convertScaleData_<uchar, float>,
|
|
convertScaleData_<uchar, double>, 0 },
|
|
|
|
{ convertScaleData_<schar, uchar>, convertScaleData_<schar, schar>,
|
|
convertScaleData_<schar, ushort>, convertScaleData_<schar, short>,
|
|
convertScaleData_<schar, int>, convertScaleData_<schar, float>,
|
|
convertScaleData_<schar, double>, 0 },
|
|
|
|
{ convertScaleData_<ushort, uchar>, convertScaleData_<ushort, schar>,
|
|
convertScaleData_<ushort, ushort>, convertScaleData_<ushort, short>,
|
|
convertScaleData_<ushort, int>, convertScaleData_<ushort, float>,
|
|
convertScaleData_<ushort, double>, 0 },
|
|
|
|
{ convertScaleData_<short, uchar>, convertScaleData_<short, schar>,
|
|
convertScaleData_<short, ushort>, convertScaleData_<short, short>,
|
|
convertScaleData_<short, int>, convertScaleData_<short, float>,
|
|
convertScaleData_<short, double>, 0 },
|
|
|
|
{ convertScaleData_<int, uchar>, convertScaleData_<int, schar>,
|
|
convertScaleData_<int, ushort>, convertScaleData_<int, short>,
|
|
convertScaleData_<int, int>, convertScaleData_<int, float>,
|
|
convertScaleData_<int, double>, 0 },
|
|
|
|
{ convertScaleData_<float, uchar>, convertScaleData_<float, schar>,
|
|
convertScaleData_<float, ushort>, convertScaleData_<float, short>,
|
|
convertScaleData_<float, int>, convertScaleData_<float, float>,
|
|
convertScaleData_<float, double>, 0 },
|
|
|
|
{ convertScaleData_<double, uchar>, convertScaleData_<double, schar>,
|
|
convertScaleData_<double, ushort>, convertScaleData_<double, short>,
|
|
convertScaleData_<double, int>, convertScaleData_<double, float>,
|
|
convertScaleData_<double, double>, 0 },
|
|
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0 }};
|
|
|
|
ConvertScaleData func = tab[CV_MAT_DEPTH(fromType)][CV_MAT_DEPTH(toType)];
|
|
CV_Assert( func != 0 );
|
|
return func;
|
|
}
|
|
|
|
enum { HASH_SIZE0 = 8 };
|
|
|
|
static inline void copyElem(const uchar* from, uchar* to, size_t elemSize)
|
|
{
|
|
size_t i;
|
|
for( i = 0; i + sizeof(int) <= elemSize; i += sizeof(int) )
|
|
*(int*)(to + i) = *(const int*)(from + i);
|
|
for( ; i < elemSize; i++ )
|
|
to[i] = from[i];
|
|
}
|
|
|
|
static inline bool isZeroElem(const uchar* data, size_t elemSize)
|
|
{
|
|
size_t i;
|
|
for( i = 0; i + sizeof(int) <= elemSize; i += sizeof(int) )
|
|
if( *(int*)(data + i) != 0 )
|
|
return false;
|
|
for( ; i < elemSize; i++ )
|
|
if( data[i] != 0 )
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
SparseMat::Hdr::Hdr( int _dims, const int* _sizes, int _type )
|
|
{
|
|
refcount = 1;
|
|
|
|
dims = _dims;
|
|
valueOffset = (int)alignSize(sizeof(SparseMat::Node) - MAX_DIM*sizeof(int) +
|
|
dims*sizeof(int), CV_ELEM_SIZE1(_type));
|
|
nodeSize = alignSize(valueOffset +
|
|
CV_ELEM_SIZE(_type), (int)sizeof(size_t));
|
|
|
|
int i;
|
|
for( i = 0; i < dims; i++ )
|
|
size[i] = _sizes[i];
|
|
for( ; i < CV_MAX_DIM; i++ )
|
|
size[i] = 0;
|
|
clear();
|
|
}
|
|
|
|
void SparseMat::Hdr::clear()
|
|
{
|
|
hashtab.clear();
|
|
hashtab.resize(HASH_SIZE0);
|
|
pool.clear();
|
|
pool.resize(nodeSize);
|
|
nodeCount = freeList = 0;
|
|
}
|
|
|
|
|
|
SparseMat::SparseMat(const Mat& m)
|
|
: flags(MAGIC_VAL), hdr(0)
|
|
{
|
|
create( m.dims, m.size, m.type() );
|
|
|
|
int i, idx[CV_MAX_DIM] = {0}, d = m.dims, lastSize = m.size[d - 1];
|
|
size_t esz = m.elemSize();
|
|
const uchar* dptr = m.ptr();
|
|
|
|
for(;;)
|
|
{
|
|
for( i = 0; i < lastSize; i++, dptr += esz )
|
|
{
|
|
if( isZeroElem(dptr, esz) )
|
|
continue;
|
|
idx[d-1] = i;
|
|
uchar* to = newNode(idx, hash(idx));
|
|
copyElem( dptr, to, esz );
|
|
}
|
|
|
|
for( i = d - 2; i >= 0; i-- )
|
|
{
|
|
dptr += m.step[i] - m.size[i+1]*m.step[i+1];
|
|
if( ++idx[i] < m.size[i] )
|
|
break;
|
|
idx[i] = 0;
|
|
}
|
|
if( i < 0 )
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SparseMat::create(int d, const int* _sizes, int _type)
|
|
{
|
|
CV_Assert( _sizes && 0 < d && d <= CV_MAX_DIM );
|
|
for( int i = 0; i < d; i++ )
|
|
CV_Assert( _sizes[i] > 0 );
|
|
_type = CV_MAT_TYPE(_type);
|
|
if( hdr && _type == type() && hdr->dims == d && hdr->refcount == 1 )
|
|
{
|
|
int i;
|
|
for( i = 0; i < d; i++ )
|
|
if( _sizes[i] != hdr->size[i] )
|
|
break;
|
|
if( i == d )
|
|
{
|
|
clear();
|
|
return;
|
|
}
|
|
}
|
|
int _sizes_backup[CV_MAX_DIM]; // #5991
|
|
if (hdr && _sizes == hdr->size)
|
|
{
|
|
for(int i = 0; i < d; i++ )
|
|
_sizes_backup[i] = _sizes[i];
|
|
_sizes = _sizes_backup;
|
|
}
|
|
release();
|
|
flags = MAGIC_VAL | _type;
|
|
hdr = new Hdr(d, _sizes, _type);
|
|
}
|
|
|
|
void SparseMat::copyTo( SparseMat& m ) const
|
|
{
|
|
if( hdr == m.hdr )
|
|
return;
|
|
if( !hdr )
|
|
{
|
|
m.release();
|
|
return;
|
|
}
|
|
m.create( hdr->dims, hdr->size, type() );
|
|
SparseMatConstIterator from = begin();
|
|
size_t N = nzcount(), esz = elemSize();
|
|
|
|
for( size_t i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = m.newNode(n->idx, n->hashval);
|
|
copyElem( from.ptr, to, esz );
|
|
}
|
|
}
|
|
|
|
void SparseMat::copyTo( Mat& m ) const
|
|
{
|
|
CV_Assert( hdr );
|
|
int ndims = dims();
|
|
m.create( ndims, hdr->size, type() );
|
|
m = Scalar(0);
|
|
|
|
SparseMatConstIterator from = begin();
|
|
size_t N = nzcount(), esz = elemSize();
|
|
|
|
for( size_t i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
copyElem( from.ptr, (ndims > 1 ? m.ptr(n->idx) : m.ptr(n->idx[0])), esz);
|
|
}
|
|
}
|
|
|
|
|
|
void SparseMat::convertTo( SparseMat& m, int rtype, double alpha ) const
|
|
{
|
|
int cn = channels();
|
|
if( rtype < 0 )
|
|
rtype = type();
|
|
rtype = CV_MAKETYPE(rtype, cn);
|
|
if( hdr == m.hdr && rtype != type() )
|
|
{
|
|
SparseMat temp;
|
|
convertTo(temp, rtype, alpha);
|
|
m = temp;
|
|
return;
|
|
}
|
|
|
|
CV_Assert(hdr != 0);
|
|
if( hdr != m.hdr )
|
|
m.create( hdr->dims, hdr->size, rtype );
|
|
|
|
SparseMatConstIterator from = begin();
|
|
size_t N = nzcount();
|
|
|
|
if( alpha == 1 )
|
|
{
|
|
ConvertData cvtfunc = getConvertElem(type(), rtype);
|
|
for( size_t i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = hdr == m.hdr ? from.ptr : m.newNode(n->idx, n->hashval);
|
|
cvtfunc( from.ptr, to, cn );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ConvertScaleData cvtfunc = getConvertScaleElem(type(), rtype);
|
|
for( size_t i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = hdr == m.hdr ? from.ptr : m.newNode(n->idx, n->hashval);
|
|
cvtfunc( from.ptr, to, cn, alpha, 0 );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void SparseMat::convertTo( Mat& m, int rtype, double alpha, double beta ) const
|
|
{
|
|
int cn = channels();
|
|
if( rtype < 0 )
|
|
rtype = type();
|
|
rtype = CV_MAKETYPE(rtype, cn);
|
|
|
|
CV_Assert( hdr );
|
|
m.create( dims(), hdr->size, rtype );
|
|
m = Scalar(beta);
|
|
|
|
SparseMatConstIterator from = begin();
|
|
size_t N = nzcount();
|
|
|
|
if( alpha == 1 && beta == 0 )
|
|
{
|
|
ConvertData cvtfunc = getConvertElem(type(), rtype);
|
|
for( size_t i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = m.ptr(n->idx);
|
|
cvtfunc( from.ptr, to, cn );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ConvertScaleData cvtfunc = getConvertScaleElem(type(), rtype);
|
|
for( size_t i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = m.ptr(n->idx);
|
|
cvtfunc( from.ptr, to, cn, alpha, beta );
|
|
}
|
|
}
|
|
}
|
|
|
|
void SparseMat::clear()
|
|
{
|
|
if( hdr )
|
|
hdr->clear();
|
|
}
|
|
|
|
uchar* SparseMat::ptr(int i0, bool createMissing, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 1 );
|
|
size_t h = hashval ? *hashval : hash(i0);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 )
|
|
return &value<uchar>(elem);
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( createMissing )
|
|
{
|
|
int idx[] = { i0 };
|
|
return newNode( idx, h );
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
uchar* SparseMat::ptr(int i0, int i1, bool createMissing, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 2 );
|
|
size_t h = hashval ? *hashval : hash(i0, i1);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 && elem->idx[1] == i1 )
|
|
return &value<uchar>(elem);
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( createMissing )
|
|
{
|
|
int idx[] = { i0, i1 };
|
|
return newNode( idx, h );
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
uchar* SparseMat::ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 3 );
|
|
size_t h = hashval ? *hashval : hash(i0, i1, i2);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 &&
|
|
elem->idx[1] == i1 && elem->idx[2] == i2 )
|
|
return &value<uchar>(elem);
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( createMissing )
|
|
{
|
|
int idx[] = { i0, i1, i2 };
|
|
return newNode( idx, h );
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
uchar* SparseMat::ptr(const int* idx, bool createMissing, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr );
|
|
int i, d = hdr->dims;
|
|
size_t h = hashval ? *hashval : hash(idx);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h )
|
|
{
|
|
for( i = 0; i < d; i++ )
|
|
if( elem->idx[i] != idx[i] )
|
|
break;
|
|
if( i == d )
|
|
return &value<uchar>(elem);
|
|
}
|
|
nidx = elem->next;
|
|
}
|
|
|
|
return createMissing ? newNode(idx, h) : NULL;
|
|
}
|
|
|
|
void SparseMat::erase(int i0, int i1, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 2 );
|
|
size_t h = hashval ? *hashval : hash(i0, i1);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 && elem->idx[1] == i1 )
|
|
break;
|
|
previdx = nidx;
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( nidx )
|
|
removeNode(hidx, nidx, previdx);
|
|
}
|
|
|
|
void SparseMat::erase(int i0, int i1, int i2, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 3 );
|
|
size_t h = hashval ? *hashval : hash(i0, i1, i2);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 &&
|
|
elem->idx[1] == i1 && elem->idx[2] == i2 )
|
|
break;
|
|
previdx = nidx;
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( nidx )
|
|
removeNode(hidx, nidx, previdx);
|
|
}
|
|
|
|
void SparseMat::erase(const int* idx, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr );
|
|
int i, d = hdr->dims;
|
|
size_t h = hashval ? *hashval : hash(idx);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h )
|
|
{
|
|
for( i = 0; i < d; i++ )
|
|
if( elem->idx[i] != idx[i] )
|
|
break;
|
|
if( i == d )
|
|
break;
|
|
}
|
|
previdx = nidx;
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( nidx )
|
|
removeNode(hidx, nidx, previdx);
|
|
}
|
|
|
|
void SparseMat::resizeHashTab(size_t newsize)
|
|
{
|
|
newsize = std::max(newsize, (size_t)8);
|
|
if((newsize & (newsize-1)) != 0)
|
|
newsize = (size_t)1 << cvCeil(std::log((double)newsize)/CV_LOG2);
|
|
|
|
size_t hsize = hdr->hashtab.size();
|
|
std::vector<size_t> _newh(newsize);
|
|
size_t* newh = &_newh[0];
|
|
for( size_t i = 0; i < newsize; i++ )
|
|
newh[i] = 0;
|
|
uchar* pool = &hdr->pool[0];
|
|
for( size_t i = 0; i < hsize; i++ )
|
|
{
|
|
size_t nidx = hdr->hashtab[i];
|
|
while( nidx )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
size_t next = elem->next;
|
|
size_t newhidx = elem->hashval & (newsize - 1);
|
|
elem->next = newh[newhidx];
|
|
newh[newhidx] = nidx;
|
|
nidx = next;
|
|
}
|
|
}
|
|
hdr->hashtab = _newh;
|
|
}
|
|
|
|
uchar* SparseMat::newNode(const int* idx, size_t hashval)
|
|
{
|
|
const int HASH_MAX_FILL_FACTOR=3;
|
|
assert(hdr);
|
|
size_t hsize = hdr->hashtab.size();
|
|
if( ++hdr->nodeCount > hsize*HASH_MAX_FILL_FACTOR )
|
|
{
|
|
resizeHashTab(std::max(hsize*2, (size_t)8));
|
|
hsize = hdr->hashtab.size();
|
|
}
|
|
|
|
if( !hdr->freeList )
|
|
{
|
|
size_t i, nsz = hdr->nodeSize, psize = hdr->pool.size(),
|
|
newpsize = std::max(psize*3/2, 8*nsz);
|
|
newpsize = (newpsize/nsz)*nsz;
|
|
hdr->pool.resize(newpsize);
|
|
uchar* pool = &hdr->pool[0];
|
|
hdr->freeList = std::max(psize, nsz);
|
|
for( i = hdr->freeList; i < newpsize - nsz; i += nsz )
|
|
((Node*)(pool + i))->next = i + nsz;
|
|
((Node*)(pool + i))->next = 0;
|
|
}
|
|
size_t nidx = hdr->freeList;
|
|
Node* elem = (Node*)&hdr->pool[nidx];
|
|
hdr->freeList = elem->next;
|
|
elem->hashval = hashval;
|
|
size_t hidx = hashval & (hsize - 1);
|
|
elem->next = hdr->hashtab[hidx];
|
|
hdr->hashtab[hidx] = nidx;
|
|
|
|
int i, d = hdr->dims;
|
|
for( i = 0; i < d; i++ )
|
|
elem->idx[i] = idx[i];
|
|
size_t esz = elemSize();
|
|
uchar* p = &value<uchar>(elem);
|
|
if( esz == sizeof(float) )
|
|
*((float*)p) = 0.f;
|
|
else if( esz == sizeof(double) )
|
|
*((double*)p) = 0.;
|
|
else
|
|
memset(p, 0, esz);
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
void SparseMat::removeNode(size_t hidx, size_t nidx, size_t previdx)
|
|
{
|
|
Node* n = node(nidx);
|
|
if( previdx )
|
|
{
|
|
Node* prev = node(previdx);
|
|
prev->next = n->next;
|
|
}
|
|
else
|
|
hdr->hashtab[hidx] = n->next;
|
|
n->next = hdr->freeList;
|
|
hdr->freeList = nidx;
|
|
--hdr->nodeCount;
|
|
}
|
|
|
|
//
|
|
// Operations
|
|
//
|
|
double norm( const SparseMat& src, int normType )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
SparseMatConstIterator it = src.begin();
|
|
|
|
size_t i, N = src.nzcount();
|
|
normType &= NORM_TYPE_MASK;
|
|
int type = src.type();
|
|
double result = 0;
|
|
|
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
|
|
|
|
if( type == CV_32F )
|
|
{
|
|
if( normType == NORM_INF )
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
CV_Assert(it.ptr);
|
|
result = std::max(result, std::abs((double)it.value<float>()));
|
|
}
|
|
else if( normType == NORM_L1 )
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
CV_Assert(it.ptr);
|
|
result += std::abs(it.value<float>());
|
|
}
|
|
else
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
CV_Assert(it.ptr);
|
|
double v = it.value<float>();
|
|
result += v*v;
|
|
}
|
|
}
|
|
else if( type == CV_64F )
|
|
{
|
|
if( normType == NORM_INF )
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
CV_Assert(it.ptr);
|
|
result = std::max(result, std::abs(it.value<double>()));
|
|
}
|
|
else if( normType == NORM_L1 )
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
CV_Assert(it.ptr);
|
|
result += std::abs(it.value<double>());
|
|
}
|
|
else
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
CV_Assert(it.ptr);
|
|
double v = it.value<double>();
|
|
result += v*v;
|
|
}
|
|
}
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
|
|
|
if( normType == NORM_L2 )
|
|
result = std::sqrt(result);
|
|
return result;
|
|
}
|
|
|
|
void minMaxLoc( const SparseMat& src, double* _minval, double* _maxval, int* _minidx, int* _maxidx )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
SparseMatConstIterator it = src.begin();
|
|
size_t i, N = src.nzcount(), d = src.hdr ? src.hdr->dims : 0;
|
|
int type = src.type();
|
|
const int *minidx = 0, *maxidx = 0;
|
|
|
|
if( type == CV_32F )
|
|
{
|
|
float minval = FLT_MAX, maxval = -FLT_MAX;
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
CV_Assert(it.ptr);
|
|
float v = it.value<float>();
|
|
if( v < minval )
|
|
{
|
|
minval = v;
|
|
minidx = it.node()->idx;
|
|
}
|
|
if( v > maxval )
|
|
{
|
|
maxval = v;
|
|
maxidx = it.node()->idx;
|
|
}
|
|
}
|
|
if( _minval )
|
|
*_minval = minval;
|
|
if( _maxval )
|
|
*_maxval = maxval;
|
|
}
|
|
else if( type == CV_64F )
|
|
{
|
|
double minval = DBL_MAX, maxval = -DBL_MAX;
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
CV_Assert(it.ptr);
|
|
double v = it.value<double>();
|
|
if( v < minval )
|
|
{
|
|
minval = v;
|
|
minidx = it.node()->idx;
|
|
}
|
|
if( v > maxval )
|
|
{
|
|
maxval = v;
|
|
maxidx = it.node()->idx;
|
|
}
|
|
}
|
|
if( _minval )
|
|
*_minval = minval;
|
|
if( _maxval )
|
|
*_maxval = maxval;
|
|
}
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
|
|
|
if( _minidx && minidx )
|
|
for( i = 0; i < d; i++ )
|
|
_minidx[i] = minidx[i];
|
|
if( _maxidx && maxidx )
|
|
for( i = 0; i < d; i++ )
|
|
_maxidx[i] = maxidx[i];
|
|
}
|
|
|
|
|
|
void normalize( const SparseMat& src, SparseMat& dst, double a, int norm_type )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
double scale = 1;
|
|
if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C )
|
|
{
|
|
scale = norm( src, norm_type );
|
|
scale = scale > DBL_EPSILON ? a/scale : 0.;
|
|
}
|
|
else
|
|
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );
|
|
|
|
src.convertTo( dst, -1, scale );
|
|
}
|
|
|
|
} // cv::
|
|
|
|
//
|
|
// C-API glue
|
|
//
|
|
CvSparseMat* cvCreateSparseMat(const cv::SparseMat& sm)
|
|
{
|
|
if( !sm.hdr || sm.hdr->dims > (int)cv::SparseMat::MAX_DIM)
|
|
return 0;
|
|
|
|
CvSparseMat* m = cvCreateSparseMat(sm.hdr->dims, sm.hdr->size, sm.type());
|
|
|
|
cv::SparseMatConstIterator from = sm.begin();
|
|
size_t i, N = sm.nzcount(), esz = sm.elemSize();
|
|
|
|
for( i = 0; i < N; i++, ++from )
|
|
{
|
|
const cv::SparseMat::Node* n = from.node();
|
|
uchar* to = cvPtrND(m, n->idx, 0, -2, 0);
|
|
cv::copyElem(from.ptr, to, esz);
|
|
}
|
|
return m;
|
|
}
|
|
|
|
void CvSparseMat::copyToSparseMat(cv::SparseMat& m) const
|
|
{
|
|
m.create( dims, &size[0], type );
|
|
|
|
CvSparseMatIterator it;
|
|
CvSparseNode* n = cvInitSparseMatIterator(this, &it);
|
|
size_t esz = m.elemSize();
|
|
|
|
for( ; n != 0; n = cvGetNextSparseNode(&it) )
|
|
{
|
|
const int* idx = CV_NODE_IDX(this, n);
|
|
uchar* to = m.newNode(idx, m.hash(idx));
|
|
cv::copyElem((const uchar*)CV_NODE_VAL(this, n), to, esz);
|
|
}
|
|
}
|