opencv/modules/core/src/convert_scale.dispatch.cpp
Alexander Alekhin cbfd38bd41 core: rework code locality
- to reduce binaries size of FFmpeg Windows wrapper
- MinGW linker doesn't support -ffunction-sections (used for FFmpeg Windows wrapper)
- move code to improve locality with its used dependencies
- move UMat::dot() to matmul.dispatch.cpp (Mat::dot() is already there)
- move UMat::inv() to lapack.cpp
- move UMat::mul() to arithm.cpp
- move UMat:eye() to matrix_operations.cpp (near setIdentity() implementation)
- move normalize(): convert_scale.cpp => norm.cpp
- move convertAndUnrollScalar(): arithm.cpp => copy.cpp
- move scalarToRawData(): array.cpp => copy.cpp
- move transpose(): matrix_operations.cpp => matrix_transform.cpp
- move flip(), rotate(): copy.cpp => matrix_transform.cpp (rotate90 uses flip and transpose)
- add 'OPENCV_CORE_EXCLUDE_C_API' CMake variable to exclude compilation of C-API functions from the core module
- matrix_wrap.cpp: add compile-time checks for CUDA/OpenGL calls
- the steps above allow to reduce FFmpeg wrapper size for ~1.5Mb (initial size of OpenCV part is about 3Mb)

backport is done to improve merge experience (less conflicts)
backport of commit: 65eb946756
2021-03-02 23:24:28 +00:00

120 lines
4.0 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include "convert_scale.simd.hpp"
#include "convert_scale.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
namespace cv
{
static BinaryFunc getCvtScaleAbsFunc(int depth)
{
CV_INSTRUMENT_REGION();
CV_CPU_DISPATCH(getCvtScaleAbsFunc, (depth),
CV_CPU_DISPATCH_MODES_ALL);
}
BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
{
CV_INSTRUMENT_REGION();
CV_CPU_DISPATCH(getConvertScaleFunc, (sdepth, ddepth),
CV_CPU_DISPATCH_MODES_ALL);
}
#ifdef HAVE_OPENCL
static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta )
{
const ocl::Device & d = ocl::Device::getDefault();
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool doubleSupport = d.doubleFPConfig() > 0;
if (!doubleSupport && depth == CV_64F)
return false;
_dst.create(_src.size(), CV_8UC(cn));
int kercn = 1;
if (d.isIntel())
{
static const int vectorWidths[] = {4, 4, 4, 4, 4, 4, 4, -1};
kercn = ocl::checkOptimalVectorWidth( vectorWidths, _src, _dst,
noArray(), noArray(), noArray(),
noArray(), noArray(), noArray(),
noArray(), ocl::OCL_VECTOR_MAX);
}
else
kercn = ocl::predictOptimalVectorWidthMax(_src, _dst);
int rowsPerWI = d.isIntel() ? 4 : 1;
char cvt[2][50];
int wdepth = std::max(depth, CV_32F);
String build_opt = format("-D OP_CONVERT_SCALE_ABS -D UNARY_OP -D dstT=%s -D DEPTH_dst=%d -D srcT1=%s"
" -D workT=%s -D wdepth=%d -D convertToWT1=%s -D convertToDT=%s"
" -D workT1=%s -D rowsPerWI=%d%s",
ocl::typeToStr(CV_8UC(kercn)), CV_8U,
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), wdepth,
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]),
ocl::convertTypeStr(wdepth, CV_8U, kercn, cvt[1]),
ocl::typeToStr(wdepth), rowsPerWI,
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
ocl::Kernel k("KF", ocl::core::arithm_oclsrc, build_opt);
if (k.empty())
return false;
UMat src = _src.getUMat();
UMat dst = _dst.getUMat();
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
if (wdepth == CV_32F)
k.args(srcarg, dstarg, (float)alpha, (float)beta);
else if (wdepth == CV_64F)
k.args(srcarg, dstarg, alpha, beta);
size_t globalsize[2] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
#endif
void convertScaleAbs(InputArray _src, OutputArray _dst, double alpha, double beta)
{
CV_INSTRUMENT_REGION();
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
ocl_convertScaleAbs(_src, _dst, alpha, beta))
Mat src = _src.getMat();
int cn = src.channels();
double scale[] = {alpha, beta};
_dst.create( src.dims, src.size, CV_8UC(cn) );
Mat dst = _dst.getMat();
BinaryFunc func = getCvtScaleAbsFunc(src.depth());
CV_Assert( func != 0 );
if( src.dims <= 2 )
{
Size sz = getContinuousSize2D(src, dst, cn);
func( src.ptr(), src.step, 0, 0, dst.ptr(), dst.step, sz, scale );
}
else
{
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2] = {};
NAryMatIterator it(arrays, ptrs);
Size sz((int)it.size*cn, 1);
for( size_t i = 0; i < it.nplanes; i++, ++it )
func( ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale );
}
}
} // namespace