opencv/modules/imgproc/src/shapedescr.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

1105 lines
31 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
static int intersectLines( double x1, double dx1, double y1, double dy1,
double x2, double dx2, double y2, double dy2, double *t2 )
{
double d = dx1 * dy2 - dx2 * dy1;
int result = -1;
if( d != 0 )
{
*t2 = ((x2 - x1) * dy1 - (y2 - y1) * dx1) / d;
result = 0;
}
return result;
}
static bool findCircle( Point2f pt0, Point2f pt1, Point2f pt2,
Point2f* center, float* radius )
{
double x1 = (pt0.x + pt1.x) * 0.5;
double dy1 = pt0.x - pt1.x;
double x2 = (pt1.x + pt2.x) * 0.5;
double dy2 = pt1.x - pt2.x;
double y1 = (pt0.y + pt1.y) * 0.5;
double dx1 = pt1.y - pt0.y;
double y2 = (pt1.y + pt2.y) * 0.5;
double dx2 = pt2.y - pt1.y;
double t = 0;
if( intersectLines( x1, dx1, y1, dy1, x2, dx2, y2, dy2, &t ) >= 0 )
{
center->x = (float) (x2 + dx2 * t);
center->y = (float) (y2 + dy2 * t);
*radius = (float)norm(*center - pt0);
return true;
}
center->x = center->y = 0.f;
radius = 0;
return false;
}
static double pointInCircle( Point2f pt, Point2f center, float radius )
{
double dx = pt.x - center.x;
double dy = pt.y - center.y;
return (double)radius*radius - dx*dx - dy*dy;
}
static int findEnslosingCicle4pts_32f( Point2f* pts, Point2f& _center, float& _radius )
{
int shuffles[4][4] = { {0, 1, 2, 3}, {0, 1, 3, 2}, {2, 3, 0, 1}, {2, 3, 1, 0} };
int idxs[4] = { 0, 1, 2, 3 };
int i, j, k = 1, mi = 0;
float max_dist = 0;
Point2f center;
Point2f min_center;
float radius, min_radius = FLT_MAX;
Point2f res_pts[4];
center = min_center = pts[0];
radius = 1.f;
for( i = 0; i < 4; i++ )
for( j = i + 1; j < 4; j++ )
{
float dist = (float)norm(pts[i] - pts[j]);
if( max_dist < dist )
{
max_dist = dist;
idxs[0] = i;
idxs[1] = j;
}
}
if( max_dist > 0 )
{
k = 2;
for( i = 0; i < 4; i++ )
{
for( j = 0; j < k; j++ )
if( i == idxs[j] )
break;
if( j == k )
idxs[k++] = i;
}
center = Point2f( (pts[idxs[0]].x + pts[idxs[1]].x)*0.5f,
(pts[idxs[0]].y + pts[idxs[1]].y)*0.5f );
radius = (float)(norm(pts[idxs[0]] - center)*1.03);
if( radius < 1.f )
radius = 1.f;
if( pointInCircle( pts[idxs[2]], center, radius ) >= 0 &&
pointInCircle( pts[idxs[3]], center, radius ) >= 0 )
{
k = 2; //rand()%2+2;
}
else
{
mi = -1;
for( i = 0; i < 4; i++ )
{
if( findCircle( pts[shuffles[i][0]], pts[shuffles[i][1]],
pts[shuffles[i][2]], &center, &radius ) )
{
radius *= 1.03f;
if( radius < 2.f )
radius = 2.f;
if( pointInCircle( pts[shuffles[i][3]], center, radius ) >= 0 &&
min_radius > radius )
{
min_radius = radius;
min_center = center;
mi = i;
}
}
}
CV_Assert( mi >= 0 );
if( mi < 0 )
mi = 0;
k = 3;
center = min_center;
radius = min_radius;
for( i = 0; i < 4; i++ )
idxs[i] = shuffles[mi][i];
}
}
_center = center;
_radius = radius;
/* reorder output points */
for( i = 0; i < 4; i++ )
res_pts[i] = pts[idxs[i]];
for( i = 0; i < 4; i++ )
{
pts[i] = res_pts[i];
CV_Assert( pointInCircle( pts[i], center, radius ) >= 0 );
}
return k;
}
}
void cv::minEnclosingCircle( InputArray _points, Point2f& _center, float& _radius )
{
int max_iters = 100;
const float eps = FLT_EPSILON*2;
bool result = false;
Mat points = _points.getMat();
int i, j, k, count = points.checkVector(2);
int depth = points.depth();
Point2f center;
float radius = 0.f;
CV_Assert(count >= 0 && (depth == CV_32F || depth == CV_32S));
_center.x = _center.y = 0.f;
_radius = 0.f;
if( count == 0 )
return;
bool is_float = depth == CV_32F;
const Point* ptsi = (const Point*)points.data;
const Point2f* ptsf = (const Point2f*)points.data;
Point2f pt = is_float ? ptsf[0] : Point2f((float)ptsi[0].x,(float)ptsi[0].y);
Point2f pts[4] = {pt, pt, pt, pt};
for( i = 1; i < count; i++ )
{
pt = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
if( pt.x < pts[0].x )
pts[0] = pt;
if( pt.x > pts[1].x )
pts[1] = pt;
if( pt.y < pts[2].y )
pts[2] = pt;
if( pt.y > pts[3].y )
pts[3] = pt;
}
for( k = 0; k < max_iters; k++ )
{
double min_delta = 0, delta;
Point2f farAway(0,0);
/*only for first iteration because the alg is repared at the loop's foot*/
if( k == 0 )
findEnslosingCicle4pts_32f( pts, center, radius );
for( i = 0; i < count; i++ )
{
pt = is_float ? ptsf[i] : Point2f((float)ptsi[i].x,(float)ptsi[i].y);
delta = pointInCircle( pt, center, radius );
if( delta < min_delta )
{
min_delta = delta;
farAway = pt;
}
}
result = min_delta >= 0;
if( result )
break;
Point2f ptsCopy[4];
// find good replacement partner for the point which is at most far away,
// starting with the one that lays in the actual circle (i=3)
for( i = 3; i >= 0; i-- )
{
for( j = 0; j < 4; j++ )
ptsCopy[j] = i != j ? pts[j] : farAway;
findEnslosingCicle4pts_32f( ptsCopy, center, radius );
if( pointInCircle( pts[i], center, radius ) >= 0)
{
// replaced one again in the new circle?
pts[i] = farAway;
break;
}
}
}
if( !result )
{
radius = 0.f;
for( i = 0; i < count; i++ )
{
pt = is_float ? ptsf[i] : Point2f((float)ptsi[i].x,(float)ptsi[i].y);
float dx = center.x - pt.x, dy = center.y - pt.y;
float t = dx*dx + dy*dy;
radius = MAX(radius, t);
}
radius = (float)(std::sqrt(radius)*(1 + eps));
}
_center = center;
_radius = radius;
}
// calculates length of a curve (e.g. contour perimeter)
double cv::arcLength( InputArray _curve, bool is_closed )
{
Mat curve = _curve.getMat();
int count = curve.checkVector(2);
int depth = curve.depth();
CV_Assert( count >= 0 && (depth == CV_32F || depth == CV_32S));
double perimeter = 0;
int i, j = 0;
const int N = 16;
float buf[N];
if( count <= 1 )
return 0.;
bool is_float = depth == CV_32F;
int last = is_closed ? count-1 : 0;
const Point* pti = (const Point*)curve.data;
const Point2f* ptf = (const Point2f*)curve.data;
Point2f prev = is_float ? ptf[last] : Point2f((float)pti[last].x,(float)pti[last].y);
for( i = 0; i < count; i++ )
{
Point2f p = is_float ? ptf[i] : Point2f((float)pti[i].x,(float)pti[i].y);
float dx = p.x - prev.x, dy = p.y - prev.y;
buf[j] = dx*dx + dy*dy;
if( ++j == N || i == count-1 )
{
Mat bufmat(1, j, CV_32F, buf);
sqrt(bufmat, bufmat);
for( ; j > 0; j-- )
perimeter += buf[j-1];
}
prev = p;
}
return perimeter;
}
// area of a whole sequence
double cv::contourArea( InputArray _contour, bool oriented )
{
Mat contour = _contour.getMat();
int npoints = contour.checkVector(2);
int depth = contour.depth();
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S));
if( npoints == 0 )
return 0.;
double a00 = 0;
bool is_float = depth == CV_32F;
const Point* ptsi = (const Point*)contour.data;
const Point2f* ptsf = (const Point2f*)contour.data;
Point2f prev = is_float ? ptsf[npoints-1] : Point2f((float)ptsi[npoints-1].x, (float)ptsi[npoints-1].y);
for( int i = 0; i < npoints; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
a00 += (double)prev.x * p.y - (double)prev.y * p.x;
prev = p;
}
a00 *= 0.5;
if( !oriented )
a00 = fabs(a00);
return a00;
}
cv::RotatedRect cv::fitEllipse( InputArray _points )
{
Mat points = _points.getMat();
int i, n = points.checkVector(2);
int depth = points.depth();
CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S));
RotatedRect box;
if( n < 5 )
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" );
// New fitellipse algorithm, contributed by Dr. Daniel Weiss
Point2f c(0,0);
double gfp[5], rp[5], t;
const double min_eps = 1e-6;
bool is_float = depth == CV_32F;
const Point* ptsi = (const Point*)points.data;
const Point2f* ptsf = (const Point2f*)points.data;
AutoBuffer<double> _Ad(n*5), _bd(n);
double *Ad = _Ad, *bd = _bd;
// first fit for parameters A - E
Mat A( n, 5, CV_64F, Ad );
Mat b( n, 1, CV_64F, bd );
Mat x( 5, 1, CV_64F, gfp );
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
c += p;
}
c.x /= n;
c.y /= n;
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
p -= c;
bd[i] = 10000.0; // 1.0?
Ad[i*5] = -(double)p.x * p.x; // A - C signs inverted as proposed by APP
Ad[i*5 + 1] = -(double)p.y * p.y;
Ad[i*5 + 2] = -(double)p.x * p.y;
Ad[i*5 + 3] = p.x;
Ad[i*5 + 4] = p.y;
}
solve(A, b, x, DECOMP_SVD);
// now use general-form parameters A - E to find the ellipse center:
// differentiate general form wrt x/y to get two equations for cx and cy
A = Mat( 2, 2, CV_64F, Ad );
b = Mat( 2, 1, CV_64F, bd );
x = Mat( 2, 1, CV_64F, rp );
Ad[0] = 2 * gfp[0];
Ad[1] = Ad[2] = gfp[2];
Ad[3] = 2 * gfp[1];
bd[0] = gfp[3];
bd[1] = gfp[4];
solve( A, b, x, DECOMP_SVD );
// re-fit for parameters A - C with those center coordinates
A = Mat( n, 3, CV_64F, Ad );
b = Mat( n, 1, CV_64F, bd );
x = Mat( 3, 1, CV_64F, gfp );
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
p -= c;
bd[i] = 1.0;
Ad[i * 3] = (p.x - rp[0]) * (p.x - rp[0]);
Ad[i * 3 + 1] = (p.y - rp[1]) * (p.y - rp[1]);
Ad[i * 3 + 2] = (p.x - rp[0]) * (p.y - rp[1]);
}
solve(A, b, x, DECOMP_SVD);
// store angle and radii
rp[4] = -0.5 * atan2(gfp[2], gfp[1] - gfp[0]); // convert from APP angle usage
t = sin(-2.0 * rp[4]);
if( fabs(t) > fabs(gfp[2])*min_eps )
t = gfp[2]/t;
else
t = gfp[1] - gfp[0];
rp[2] = fabs(gfp[0] + gfp[1] - t);
if( rp[2] > min_eps )
rp[2] = std::sqrt(2.0 / rp[2]);
rp[3] = fabs(gfp[0] + gfp[1] + t);
if( rp[3] > min_eps )
rp[3] = std::sqrt(2.0 / rp[3]);
box.center.x = (float)rp[0] + c.x;
box.center.y = (float)rp[1] + c.y;
box.size.width = (float)(rp[2]*2);
box.size.height = (float)(rp[3]*2);
if( box.size.width > box.size.height )
{
float tmp;
CV_SWAP( box.size.width, box.size.height, tmp );
box.angle = (float)(90 + rp[4]*180/CV_PI);
}
if( box.angle < -180 )
box.angle += 360;
if( box.angle > 360 )
box.angle -= 360;
return box;
}
namespace cv
{
// Calculates bounding rectagnle of a point set or retrieves already calculated
static Rect pointSetBoundingRect( const Mat& points )
{
int npoints = points.checkVector(2);
int depth = points.depth();
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S));
int xmin = 0, ymin = 0, xmax = -1, ymax = -1, i;
bool is_float = depth == CV_32F;
if( npoints == 0 )
return Rect();
const Point* pts = (const Point*)points.data;
Point pt = pts[0];
#if CV_SSE4_2
if(cv::checkHardwareSupport(CV_CPU_SSE4_2))
{
if( !is_float )
{
__m128i minval, maxval;
minval = maxval = _mm_loadl_epi64((const __m128i*)(&pt)); //min[0]=pt.x, min[1]=pt.y
for( i = 1; i < npoints; i++ )
{
__m128i ptXY = _mm_loadl_epi64((const __m128i*)&pts[i]);
minval = _mm_min_epi32(ptXY, minval);
maxval = _mm_max_epi32(ptXY, maxval);
}
xmin = _mm_cvtsi128_si32(minval);
ymin = _mm_cvtsi128_si32(_mm_srli_si128(minval, 4));
xmax = _mm_cvtsi128_si32(maxval);
ymax = _mm_cvtsi128_si32(_mm_srli_si128(maxval, 4));
}
else
{
__m128 minvalf, maxvalf, z = _mm_setzero_ps(), ptXY = _mm_setzero_ps();
minvalf = maxvalf = _mm_loadl_pi(z, (const __m64*)(&pt));
for( i = 1; i < npoints; i++ )
{
ptXY = _mm_loadl_pi(ptXY, (const __m64*)&pts[i]);
minvalf = _mm_min_ps(minvalf, ptXY);
maxvalf = _mm_max_ps(maxvalf, ptXY);
}
float xyminf[2], xymaxf[2];
_mm_storel_pi((__m64*)xyminf, minvalf);
_mm_storel_pi((__m64*)xymaxf, maxvalf);
xmin = cvFloor(xyminf[0]);
ymin = cvFloor(xyminf[1]);
xmax = cvFloor(xymaxf[0]);
ymax = cvFloor(xymaxf[1]);
}
}
else
#endif
{
if( !is_float )
{
xmin = xmax = pt.x;
ymin = ymax = pt.y;
for( i = 1; i < npoints; i++ )
{
pt = pts[i];
if( xmin > pt.x )
xmin = pt.x;
if( xmax < pt.x )
xmax = pt.x;
if( ymin > pt.y )
ymin = pt.y;
if( ymax < pt.y )
ymax = pt.y;
}
}
else
{
Cv32suf v;
// init values
xmin = xmax = CV_TOGGLE_FLT(pt.x);
ymin = ymax = CV_TOGGLE_FLT(pt.y);
for( i = 1; i < npoints; i++ )
{
pt = pts[i];
pt.x = CV_TOGGLE_FLT(pt.x);
pt.y = CV_TOGGLE_FLT(pt.y);
if( xmin > pt.x )
xmin = pt.x;
if( xmax < pt.x )
xmax = pt.x;
if( ymin > pt.y )
ymin = pt.y;
if( ymax < pt.y )
ymax = pt.y;
}
v.i = CV_TOGGLE_FLT(xmin); xmin = cvFloor(v.f);
v.i = CV_TOGGLE_FLT(ymin); ymin = cvFloor(v.f);
// because right and bottom sides of the bounding rectangle are not inclusive
// (note +1 in width and height calculation below), cvFloor is used here instead of cvCeil
v.i = CV_TOGGLE_FLT(xmax); xmax = cvFloor(v.f);
v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f);
}
}
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
}
static Rect maskBoundingRect( const Mat& img )
{
CV_Assert( img.depth() <= CV_8S && img.channels() == 1 );
Size size = img.size();
int xmin = size.width, ymin = -1, xmax = -1, ymax = -1, i, j, k;
for( i = 0; i < size.height; i++ )
{
const uchar* _ptr = img.ptr(i);
const uchar* ptr = (const uchar*)alignPtr(_ptr, 4);
int have_nz = 0, k_min, offset = (int)(ptr - _ptr);
j = 0;
offset = MIN(offset, size.width);
for( ; j < offset; j++ )
if( _ptr[j] )
{
have_nz = 1;
break;
}
if( j < offset )
{
if( j < xmin )
xmin = j;
if( j > xmax )
xmax = j;
}
if( offset < size.width )
{
xmin -= offset;
xmax -= offset;
size.width -= offset;
j = 0;
for( ; j <= xmin - 4; j += 4 )
if( *((int*)(ptr+j)) )
break;
for( ; j < xmin; j++ )
if( ptr[j] )
{
xmin = j;
if( j > xmax )
xmax = j;
have_nz = 1;
break;
}
k_min = MAX(j-1, xmax);
k = size.width - 1;
for( ; k > k_min && (k&3) != 3; k-- )
if( ptr[k] )
break;
if( k > k_min && (k&3) == 3 )
{
for( ; k > k_min+3; k -= 4 )
if( *((int*)(ptr+k-3)) )
break;
}
for( ; k > k_min; k-- )
if( ptr[k] )
{
xmax = k;
have_nz = 1;
break;
}
if( !have_nz )
{
j &= ~3;
for( ; j <= k - 3; j += 4 )
if( *((int*)(ptr+j)) )
break;
for( ; j <= k; j++ )
if( ptr[j] )
{
have_nz = 1;
break;
}
}
xmin += offset;
xmax += offset;
size.width += offset;
}
if( have_nz )
{
if( ymin < 0 )
ymin = i;
ymax = i;
}
}
if( xmin >= size.width )
xmin = ymin = 0;
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
}
}
cv::Rect cv::boundingRect(InputArray array)
{
Mat m = array.getMat();
return m.depth() <= CV_8U ? maskBoundingRect(m) : pointSetBoundingRect(m);
}
////////////////////////////////////////////// C API ///////////////////////////////////////////
CV_IMPL int
cvMinEnclosingCircle( const void* array, CvPoint2D32f * _center, float *_radius )
{
cv::AutoBuffer<double> abuf;
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf);
cv::Point2f center;
float radius;
cv::minEnclosingCircle(points, center, radius);
if(_center)
*_center = center;
if(_radius)
*_radius = radius;
return 1;
}
static void
icvMemCopy( double **buf1, double **buf2, double **buf3, int *b_max )
{
CV_Assert( (*buf1 != NULL || *buf2 != NULL) && *buf3 != NULL );
int bb = *b_max;
if( *buf2 == NULL )
{
*b_max = 2 * (*b_max);
*buf2 = (double *)cvAlloc( (*b_max) * sizeof( double ));
memcpy( *buf2, *buf3, bb * sizeof( double ));
*buf3 = *buf2;
cvFree( buf1 );
*buf1 = NULL;
}
else
{
*b_max = 2 * (*b_max);
*buf1 = (double *) cvAlloc( (*b_max) * sizeof( double ));
memcpy( *buf1, *buf3, bb * sizeof( double ));
*buf3 = *buf1;
cvFree( buf2 );
*buf2 = NULL;
}
}
/* area of a contour sector */
static double icvContourSecArea( CvSeq * contour, CvSlice slice )
{
CvPoint pt; /* pointer to points */
CvPoint pt_s, pt_e; /* first and last points */
CvSeqReader reader; /* points reader of contour */
int p_max = 2, p_ind;
int lpt, flag, i;
double a00; /* unnormalized moments m00 */
double xi, yi, xi_1, yi_1, x0, y0, dxy, sk, sk1, t;
double x_s, y_s, nx, ny, dx, dy, du, dv;
double eps = 1.e-5;
double *p_are1, *p_are2, *p_are;
double area = 0;
CV_Assert( contour != NULL && CV_IS_SEQ_POINT_SET( contour ));
lpt = cvSliceLength( slice, contour );
/*if( n2 >= n1 )
lpt = n2 - n1 + 1;
else
lpt = contour->total - n1 + n2 + 1;*/
if( contour->total <= 0 || lpt <= 2 )
return 0.;
a00 = x0 = y0 = xi_1 = yi_1 = 0;
sk1 = 0;
flag = 0;
dxy = 0;
p_are1 = (double *) cvAlloc( p_max * sizeof( double ));
p_are = p_are1;
p_are2 = NULL;
cvStartReadSeq( contour, &reader, 0 );
cvSetSeqReaderPos( &reader, slice.start_index );
CV_READ_SEQ_ELEM( pt_s, reader );
p_ind = 0;
cvSetSeqReaderPos( &reader, slice.end_index );
CV_READ_SEQ_ELEM( pt_e, reader );
/* normal coefficients */
nx = pt_s.y - pt_e.y;
ny = pt_e.x - pt_s.x;
cvSetSeqReaderPos( &reader, slice.start_index );
while( lpt-- > 0 )
{
CV_READ_SEQ_ELEM( pt, reader );
if( flag == 0 )
{
xi_1 = (double) pt.x;
yi_1 = (double) pt.y;
x0 = xi_1;
y0 = yi_1;
sk1 = 0;
flag = 1;
}
else
{
xi = (double) pt.x;
yi = (double) pt.y;
/**************** edges intersection examination **************************/
sk = nx * (xi - pt_s.x) + ny * (yi - pt_s.y);
if( (fabs( sk ) < eps && lpt > 0) || sk * sk1 < -eps )
{
if( fabs( sk ) < eps )
{
dxy = xi_1 * yi - xi * yi_1;
a00 = a00 + dxy;
dxy = xi * y0 - x0 * yi;
a00 = a00 + dxy;
if( p_ind >= p_max )
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
p_are[p_ind] = a00 / 2.;
p_ind++;
a00 = 0;
sk1 = 0;
x0 = xi;
y0 = yi;
dxy = 0;
}
else
{
/* define intersection point */
dv = yi - yi_1;
du = xi - xi_1;
dx = ny;
dy = -nx;
if( fabs( du ) > eps )
t = ((yi_1 - pt_s.y) * du + dv * (pt_s.x - xi_1)) /
(du * dy - dx * dv);
else
t = (xi_1 - pt_s.x) / dx;
if( t > eps && t < 1 - eps )
{
x_s = pt_s.x + t * dx;
y_s = pt_s.y + t * dy;
dxy = xi_1 * y_s - x_s * yi_1;
a00 += dxy;
dxy = x_s * y0 - x0 * y_s;
a00 += dxy;
if( p_ind >= p_max )
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
p_are[p_ind] = a00 / 2.;
p_ind++;
a00 = 0;
sk1 = 0;
x0 = x_s;
y0 = y_s;
dxy = x_s * yi - xi * y_s;
}
}
}
else
dxy = xi_1 * yi - xi * yi_1;
a00 += dxy;
xi_1 = xi;
yi_1 = yi;
sk1 = sk;
}
}
xi = x0;
yi = y0;
dxy = xi_1 * yi - xi * yi_1;
a00 += dxy;
if( p_ind >= p_max )
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
p_are[p_ind] = a00 / 2.;
p_ind++;
// common area calculation
area = 0;
for( i = 0; i < p_ind; i++ )
area += fabs( p_are[i] );
if( p_are1 != NULL )
cvFree( &p_are1 );
else if( p_are2 != NULL )
cvFree( &p_are2 );
return area;
}
/* external contour area function */
CV_IMPL double
cvContourArea( const void *array, CvSlice slice, int oriented )
{
double area = 0;
CvContour contour_header;
CvSeq* contour = 0;
CvSeqBlock block;
if( CV_IS_SEQ( array ))
{
contour = (CvSeq*)array;
if( !CV_IS_SEQ_POLYLINE( contour ))
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
}
else
{
contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE, array, &contour_header, &block );
}
if( cvSliceLength( slice, contour ) == contour->total )
{
cv::AutoBuffer<double> abuf;
cv::Mat points = cv::cvarrToMat(contour, false, false, 0, &abuf);
return cv::contourArea( points, oriented !=0 );
}
if( CV_SEQ_ELTYPE( contour ) != CV_32SC2 )
CV_Error( CV_StsUnsupportedFormat,
"Only curves with integer coordinates are supported in case of contour slice" );
area = icvContourSecArea( contour, slice );
return oriented ? area : fabs(area);
}
/* calculates length of a curve (e.g. contour perimeter) */
CV_IMPL double
cvArcLength( const void *array, CvSlice slice, int is_closed )
{
double perimeter = 0;
int i, j = 0, count;
const int N = 16;
float buf[N];
CvMat buffer = cvMat( 1, N, CV_32F, buf );
CvSeqReader reader;
CvContour contour_header;
CvSeq* contour = 0;
CvSeqBlock block;
if( CV_IS_SEQ( array ))
{
contour = (CvSeq*)array;
if( !CV_IS_SEQ_POLYLINE( contour ))
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
if( is_closed < 0 )
is_closed = CV_IS_SEQ_CLOSED( contour );
}
else
{
is_closed = is_closed > 0;
contour = cvPointSeqFromMat(
CV_SEQ_KIND_CURVE | (is_closed ? CV_SEQ_FLAG_CLOSED : 0),
array, &contour_header, &block );
}
if( contour->total > 1 )
{
int is_float = CV_SEQ_ELTYPE( contour ) == CV_32FC2;
cvStartReadSeq( contour, &reader, 0 );
cvSetSeqReaderPos( &reader, slice.start_index );
count = cvSliceLength( slice, contour );
count -= !is_closed && count == contour->total;
// scroll the reader by 1 point
reader.prev_elem = reader.ptr;
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );
for( i = 0; i < count; i++ )
{
float dx, dy;
if( !is_float )
{
CvPoint* pt = (CvPoint*)reader.ptr;
CvPoint* prev_pt = (CvPoint*)reader.prev_elem;
dx = (float)pt->x - (float)prev_pt->x;
dy = (float)pt->y - (float)prev_pt->y;
}
else
{
CvPoint2D32f* pt = (CvPoint2D32f*)reader.ptr;
CvPoint2D32f* prev_pt = (CvPoint2D32f*)reader.prev_elem;
dx = pt->x - prev_pt->x;
dy = pt->y - prev_pt->y;
}
reader.prev_elem = reader.ptr;
CV_NEXT_SEQ_ELEM( contour->elem_size, reader );
// Bugfix by Axel at rubico.com 2010-03-22, affects closed slices only
// wraparound not handled by CV_NEXT_SEQ_ELEM
if( is_closed && i == count - 2 )
cvSetSeqReaderPos( &reader, slice.start_index );
buffer.data.fl[j] = dx * dx + dy * dy;
if( ++j == N || i == count - 1 )
{
buffer.cols = j;
cvPow( &buffer, &buffer, 0.5 );
for( ; j > 0; j-- )
perimeter += buffer.data.fl[j-1];
}
}
}
return perimeter;
}
CV_IMPL CvBox2D
cvFitEllipse2( const CvArr* array )
{
cv::AutoBuffer<double> abuf;
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf);
return cv::fitEllipse(points);
}
/* Calculates bounding rectagnle of a point set or retrieves already calculated */
CV_IMPL CvRect
cvBoundingRect( CvArr* array, int update )
{
CvRect rect = { 0, 0, 0, 0 };
CvContour contour_header;
CvSeq* ptseq = 0;
CvSeqBlock block;
CvMat stub, *mat = 0;
int calculate = update;
if( CV_IS_SEQ( array ))
{
ptseq = (CvSeq*)array;
if( !CV_IS_SEQ_POINT_SET( ptseq ))
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
if( ptseq->header_size < (int)sizeof(CvContour))
{
update = 0;
calculate = 1;
}
}
else
{
mat = cvGetMat( array, &stub );
if( CV_MAT_TYPE(mat->type) == CV_32SC2 ||
CV_MAT_TYPE(mat->type) == CV_32FC2 )
{
ptseq = cvPointSeqFromMat(CV_SEQ_KIND_GENERIC, mat, &contour_header, &block);
mat = 0;
}
else if( CV_MAT_TYPE(mat->type) != CV_8UC1 &&
CV_MAT_TYPE(mat->type) != CV_8SC1 )
CV_Error( CV_StsUnsupportedFormat,
"The image/matrix format is not supported by the function" );
update = 0;
calculate = 1;
}
if( !calculate )
return ((CvContour*)ptseq)->rect;
if( mat )
{
rect = cv::maskBoundingRect(cv::cvarrToMat(mat));
}
else if( ptseq->total )
{
cv::AutoBuffer<double> abuf;
rect = cv::pointSetBoundingRect(cv::cvarrToMat(ptseq, false, false, 0, &abuf));
}
if( update )
((CvContour*)ptseq)->rect = rect;
return rect;
}
/* End of file. */