mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 05:54:08 +08:00
47c45e5bd3
Extend meanshift tutorial (#14393) * copy original tutorial and python code * add cpp code, fix python code * add camshift cpp code, fix bug in meanshift code * add description to ToC page * fix shadowing previous local declaration * fix grammar: with -> within * docs: remove content of old py_meanshift tutorial, add link * docs: replace meanshift tutorial subpage in Python tutorials * switch to ref to fix wrong breadcrumb navigation * switch to cmdline for path as in #14314 * Apply suggestions from code review * order programming languages alphabetically
84 lines
2.4 KiB
C++
84 lines
2.4 KiB
C++
#include <iostream>
|
|
#include <opencv2/imgcodecs.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/videoio.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/video.hpp>
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
const string about =
|
|
"This sample demonstrates the meanshift algorithm.\n"
|
|
"The example file can be downloaded from:\n"
|
|
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
|
|
const string keys =
|
|
"{ h help | | print this help message }"
|
|
"{ @image |<none>| path to image file }";
|
|
CommandLineParser parser(argc, argv, keys);
|
|
parser.about(about);
|
|
if (parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
string filename = parser.get<string>("@image");
|
|
if (!parser.check())
|
|
{
|
|
parser.printErrors();
|
|
return 0;
|
|
}
|
|
|
|
VideoCapture capture(filename);
|
|
if (!capture.isOpened()){
|
|
//error in opening the video input
|
|
cerr << "Unable to open file!" << endl;
|
|
return 0;
|
|
}
|
|
|
|
Mat frame, roi, hsv_roi, mask;
|
|
// take first frame of the video
|
|
capture >> frame;
|
|
|
|
// setup initial location of window
|
|
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
|
|
|
|
// set up the ROI for tracking
|
|
roi = frame(track_window);
|
|
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);
|
|
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);
|
|
|
|
float range_[] = {0, 180};
|
|
const float* range[] = {range_};
|
|
Mat roi_hist;
|
|
int histSize[] = {180};
|
|
int channels[] = {0};
|
|
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);
|
|
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
|
|
|
|
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
|
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
|
|
|
|
while(true){
|
|
Mat hsv, dst;
|
|
capture >> frame;
|
|
if (frame.empty())
|
|
break;
|
|
cvtColor(frame, hsv, COLOR_BGR2HSV);
|
|
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
|
|
|
|
// apply meanshift to get the new location
|
|
meanShift(dst, track_window, term_crit);
|
|
|
|
// Draw it on image
|
|
rectangle(frame, track_window, 255, 2);
|
|
imshow("img2", frame);
|
|
|
|
int keyboard = waitKey(30);
|
|
if (keyboard == 'q' || keyboard == 27)
|
|
break;
|
|
}
|
|
}
|