mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 09:49:12 +08:00
8a4a1bb018
1. someMatrix.data -> someMatrix.prt() 2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex ) 3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>() 4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
94 lines
2.9 KiB
C++
94 lines
2.9 KiB
C++
#include "opencv2/core.hpp"
|
|
|
|
#include "traincascade_features.h"
|
|
#include "cascadeclassifier.h"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
float calcNormFactor( const Mat& sum, const Mat& sqSum )
|
|
{
|
|
CV_DbgAssert( sum.cols > 3 && sqSum.rows > 3 );
|
|
Rect normrect( 1, 1, sum.cols - 3, sum.rows - 3 );
|
|
size_t p0, p1, p2, p3;
|
|
CV_SUM_OFFSETS( p0, p1, p2, p3, normrect, sum.step1() )
|
|
double area = normrect.width * normrect.height;
|
|
const int *sp = sum.ptr<int>();
|
|
int valSum = sp[p0] - sp[p1] - sp[p2] + sp[p3];
|
|
const double *sqp = sqSum.ptr<double>();
|
|
double valSqSum = sqp[p0] - sqp[p1] - sqp[p2] + sqp[p3];
|
|
return (float) sqrt( (double) (area * valSqSum - (double)valSum * valSum) );
|
|
}
|
|
|
|
CvParams::CvParams() : name( "params" ) {}
|
|
void CvParams::printDefaults() const
|
|
{ cout << "--" << name << "--" << endl; }
|
|
void CvParams::printAttrs() const {}
|
|
bool CvParams::scanAttr( const string, const string ) { return false; }
|
|
|
|
|
|
//---------------------------- FeatureParams --------------------------------------
|
|
|
|
CvFeatureParams::CvFeatureParams() : maxCatCount( 0 ), featSize( 1 )
|
|
{
|
|
name = CC_FEATURE_PARAMS;
|
|
}
|
|
|
|
void CvFeatureParams::init( const CvFeatureParams& fp )
|
|
{
|
|
maxCatCount = fp.maxCatCount;
|
|
featSize = fp.featSize;
|
|
}
|
|
|
|
void CvFeatureParams::write( FileStorage &fs ) const
|
|
{
|
|
fs << CC_MAX_CAT_COUNT << maxCatCount;
|
|
fs << CC_FEATURE_SIZE << featSize;
|
|
}
|
|
|
|
bool CvFeatureParams::read( const FileNode &node )
|
|
{
|
|
if ( node.empty() )
|
|
return false;
|
|
maxCatCount = node[CC_MAX_CAT_COUNT];
|
|
featSize = node[CC_FEATURE_SIZE];
|
|
return ( maxCatCount >= 0 && featSize >= 1 );
|
|
}
|
|
|
|
Ptr<CvFeatureParams> CvFeatureParams::create( int featureType )
|
|
{
|
|
return featureType == HAAR ? Ptr<CvFeatureParams>(new CvHaarFeatureParams) :
|
|
featureType == LBP ? Ptr<CvFeatureParams>(new CvLBPFeatureParams) :
|
|
featureType == HOG ? Ptr<CvFeatureParams>(new CvHOGFeatureParams) :
|
|
Ptr<CvFeatureParams>();
|
|
}
|
|
|
|
//------------------------------------- FeatureEvaluator ---------------------------------------
|
|
|
|
void CvFeatureEvaluator::init(const CvFeatureParams *_featureParams,
|
|
int _maxSampleCount, Size _winSize )
|
|
{
|
|
CV_Assert(_maxSampleCount > 0);
|
|
featureParams = (CvFeatureParams *)_featureParams;
|
|
winSize = _winSize;
|
|
numFeatures = 0;
|
|
cls.create( (int)_maxSampleCount, 1, CV_32FC1 );
|
|
generateFeatures();
|
|
}
|
|
|
|
void CvFeatureEvaluator::setImage(const Mat &img, uchar clsLabel, int idx)
|
|
{
|
|
CV_Assert(img.cols == winSize.width);
|
|
CV_Assert(img.rows == winSize.height);
|
|
CV_Assert(idx < cls.rows);
|
|
cls.ptr<float>(idx)[0] = clsLabel;
|
|
}
|
|
|
|
Ptr<CvFeatureEvaluator> CvFeatureEvaluator::create(int type)
|
|
{
|
|
return type == CvFeatureParams::HAAR ? Ptr<CvFeatureEvaluator>(new CvHaarEvaluator) :
|
|
type == CvFeatureParams::LBP ? Ptr<CvFeatureEvaluator>(new CvLBPEvaluator) :
|
|
type == CvFeatureParams::HOG ? Ptr<CvFeatureEvaluator>(new CvHOGEvaluator) :
|
|
Ptr<CvFeatureEvaluator>();
|
|
}
|