mirror of
https://github.com/opencv/opencv.git
synced 2025-01-04 16:47:59 +08:00
12587 lines
401 KiB
XML
12587 lines
401 KiB
XML
<?xml version="1.0"?>
|
|
<!--
|
|
22x5 Eye pair detector computed with 7000 positive samples
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
| Contributors License Agreement
|
|
| IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
| By downloading, copying, installing or using the software you agree
|
|
| to this license.
|
|
| If you do not agree to this license, do not download, install,
|
|
| copy or use the software.
|
|
|
|
|
| Copyright (c) 2006, Modesto Castrillon-Santana (IUSIANI, University of
|
|
| Las Palmas de Gran Canaria, Spain).
|
|
| All rights reserved.
|
|
|
|
|
| Redistribution and use in source and binary forms, with or without
|
|
| modification, are permitted provided that the following conditions are
|
|
| met:
|
|
|
|
|
| * Redistributions of source code must retain the above copyright
|
|
| notice, this list of conditions and the following disclaimer.
|
|
| * Redistributions in binary form must reproduce the above
|
|
| copyright notice, this list of conditions and the following
|
|
| disclaimer in the documentation and/or other materials provided
|
|
| with the distribution.
|
|
| * The name of Contributor may not used to endorse or promote products
|
|
| derived from this software without specific prior written permission.
|
|
|
|
|
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
|
|
| Top
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
RESEARCH USE:
|
|
If you are using any of the detectors or involved ideas please cite one of these papers:
|
|
|
|
@ARTICLE{Castrillon07-jvci,
|
|
author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Tejera, M. and Guerra Artal, C.",
|
|
title = "ENCARA2: Real-time Detection of Multiple Faces at Different Resolutions in Video Streams",
|
|
journal = "Journal of Visual Communication and Image Representation",
|
|
year = "2007",
|
|
vol = "18",
|
|
issue = "2",
|
|
month = "April",
|
|
pages = "130-140"
|
|
}
|
|
|
|
@INPROCEEDINGS{Castrillon07-swb,
|
|
author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Sosa, D. and Lorenzo Navarro, J. ",
|
|
title = "Using Incremental Principal Component Analysis to Learn a Gender Classifier Automatically",
|
|
booktitle = "1st Spanish Workshop on Biometrics",
|
|
year = "2007",
|
|
month = "June",
|
|
address = "Girona, Spain",
|
|
file = F
|
|
}
|
|
|
|
A comparison of this and other face related classifiers can be found in:
|
|
|
|
@InProceedings{Castrillon08a-visapp,
|
|
'athor = "Modesto Castrill\'on-Santana and O. D\'eniz-Su\'arez, L. Ant\'on-Canal\'{\i}s and J. Lorenzo-Navarro",
|
|
title = "Face and Facial Feature Detection Evaluation"
|
|
booktitle = "Third International Conference on Computer Vision Theory and Applications, VISAPP08"
|
|
year = "2008",
|
|
month = "January"
|
|
}
|
|
|
|
More information can be found at http://mozart.dis.ulpgc.es/Gias/modesto_eng.html or in the papers.
|
|
|
|
COMMERCIAL USE:
|
|
If you have any commercial interest in this work please contact
|
|
mcastrillon@iusiani.ulpgc.es
|
|
-->
|
|
|
|
<opencv_storage>
|
|
<parojos type_id="opencv-haar-classifier">
|
|
<size>
|
|
22 5</size>
|
|
<stages>
|
|
<_>
|
|
<!-- stage 0 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 15 2 -1.</_>
|
|
<_>
|
|
8 1 5 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2526662945747376</threshold>
|
|
<left_val>-0.7711064219474793</left_val>
|
|
<right_val>0.8083379864692688</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 3 5 2 -1.</_>
|
|
<_>
|
|
17 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.6097120977938175e-003</threshold>
|
|
<left_val>-0.7382487058639526</left_val>
|
|
<right_val>0.3885168135166168</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 6 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1529859006404877</threshold>
|
|
<left_val>-0.5524439215660095</left_val>
|
|
<right_val>0.6428967118263245</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 3 3 -1.</_>
|
|
<_>
|
|
17 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0415615215897560</threshold>
|
|
<left_val>0.4628770947456360</left_val>
|
|
<right_val>-0.5341588854789734</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 20 2 -1.</_>
|
|
<_>
|
|
1 2 10 1 2.</_>
|
|
<_>
|
|
11 3 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.4064395129680634</threshold>
|
|
<left_val>0.0170928593724966</left_val>
|
|
<right_val>-4.6732509765625000e+003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 2 5 2 -1.</_>
|
|
<_>
|
|
16 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0296334698796272</threshold>
|
|
<left_val>-0.4434844851493835</left_val>
|
|
<right_val>0.5070301294326782</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 1 2 -1.</_>
|
|
<_>
|
|
1 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0285720054525882e-004</threshold>
|
|
<left_val>-0.6646639108657837</left_val>
|
|
<right_val>0.3020784854888916</right_val></_></_></trees>
|
|
<stage_threshold>-1.7232350111007690</stage_threshold>
|
|
<parent>-1</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 1 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 15 2 -1.</_>
|
|
<_>
|
|
8 1 5 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3342517912387848</threshold>
|
|
<left_val>-0.6565846204757690</left_val>
|
|
<right_val>0.7222465276718140</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 2 5 2 -1.</_>
|
|
<_>
|
|
16 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0346819795668125</threshold>
|
|
<left_val>-0.6552636027336121</left_val>
|
|
<right_val>0.5463399887084961</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 3 3 -1.</_>
|
|
<_>
|
|
4 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0534898117184639</threshold>
|
|
<left_val>0.4989432096481323</left_val>
|
|
<right_val>-0.5077415108680725</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 4 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1027211993932724</threshold>
|
|
<left_val>-0.2844530940055847</left_val>
|
|
<right_val>0.4049448966979981</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 3 2 -1.</_>
|
|
<_>
|
|
0 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.4077969535719603e-004</threshold>
|
|
<left_val>-0.7902024984359741</left_val>
|
|
<right_val>0.3444094955921173</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 4 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2322703003883362</threshold>
|
|
<left_val>-0.1301804929971695</left_val>
|
|
<right_val>0.4313975870609283</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 4 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0804133936762810</threshold>
|
|
<left_val>-0.4637677967548370</left_val>
|
|
<right_val>0.4882495105266571</right_val></_></_></trees>
|
|
<stage_threshold>-1.4015640020370483</stage_threshold>
|
|
<parent>0</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 2 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 12 3 -1.</_>
|
|
<_>
|
|
9 0 4 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3527685105800629</threshold>
|
|
<left_val>-0.6308009028434753</left_val>
|
|
<right_val>0.6519911885261536</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 3 4 -1.</_>
|
|
<_>
|
|
16 3 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0732240602374077</threshold>
|
|
<left_val>-0.5955833792686462</left_val>
|
|
<right_val>0.4883106946945190</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 4 1 -1.</_>
|
|
<_>
|
|
4 1 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0226341206580400</threshold>
|
|
<left_val>0.4198729097843170</left_val>
|
|
<right_val>-0.5654544234275818</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 6 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2229817062616348</threshold>
|
|
<left_val>-0.3186086118221283</left_val>
|
|
<right_val>0.4877224862575531</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 5 2 -1.</_>
|
|
<_>
|
|
0 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0183574296534061</threshold>
|
|
<left_val>-0.4086276888847351</left_val>
|
|
<right_val>0.3995149135589600</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 1 2 -1.</_>
|
|
<_>
|
|
20 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2711199815385044e-004</threshold>
|
|
<left_val>-0.4723080098628998</left_val>
|
|
<right_val>0.2052184939384460</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 3 1 -1.</_>
|
|
<_>
|
|
5 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0108341602608562</threshold>
|
|
<left_val>0.1331830024719238</left_val>
|
|
<right_val>-0.7791494727134705</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 3 5 2 -1.</_>
|
|
<_>
|
|
17 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.9301595687866211e-003</threshold>
|
|
<left_val>-0.5978981256484985</left_val>
|
|
<right_val>0.0493724681437016</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 12 1 -1.</_>
|
|
<_>
|
|
8 1 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2945961058139801</threshold>
|
|
<left_val>-9.9943317472934723e-003</left_val>
|
|
<right_val>-3.9346069335937500e+003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 1 2 -1.</_>
|
|
<_>
|
|
20 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0239798706024885</threshold>
|
|
<left_val>0.0653594881296158</left_val>
|
|
<right_val>-0.5048499107360840</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 1 2 -1.</_>
|
|
<_>
|
|
1 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0285720054525882e-004</threshold>
|
|
<left_val>-0.6223191022872925</left_val>
|
|
<right_val>0.1374989002943039</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 16 2 -1.</_>
|
|
<_>
|
|
8 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1328265964984894</threshold>
|
|
<left_val>-0.3416162133216858</left_val>
|
|
<right_val>0.2717226147651672</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 8 2 -1.</_>
|
|
<_>
|
|
7 3 4 1 2.</_>
|
|
<_>
|
|
11 4 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0373767800629139</threshold>
|
|
<left_val>-0.7467133998870850</left_val>
|
|
<right_val>0.1147433966398239</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 3 5 2 -1.</_>
|
|
<_>
|
|
13 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.3414398357272148e-003</threshold>
|
|
<left_val>-0.3496235907077789</left_val>
|
|
<right_val>0.1292906999588013</right_val></_></_></trees>
|
|
<stage_threshold>-1.9015949964523315</stage_threshold>
|
|
<parent>1</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 3 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 15 2 -1.</_>
|
|
<_>
|
|
8 1 5 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3591364920139313</threshold>
|
|
<left_val>-0.5852038860321045</left_val>
|
|
<right_val>0.5831562876701355</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 2 1 2 -1.</_>
|
|
<_>
|
|
17 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.2016262933611870e-003</threshold>
|
|
<left_val>0.2337868064641953</left_val>
|
|
<right_val>-0.5213131904602051</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 2 1 -1.</_>
|
|
<_>
|
|
5 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0154673596844077</threshold>
|
|
<left_val>0.3357514142990112</left_val>
|
|
<right_val>-0.5408478975296021</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 6 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1552383005619049</threshold>
|
|
<left_val>-0.4648830890655518</left_val>
|
|
<right_val>0.4395757913589478</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 1 2 -1.</_>
|
|
<_>
|
|
5 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0103788999840617</threshold>
|
|
<left_val>0.2285542041063309</left_val>
|
|
<right_val>-0.4747259914875031</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 2 2 2 -1.</_>
|
|
<_>
|
|
20 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.5254109688103199e-003</threshold>
|
|
<left_val>0.3016864955425263</left_val>
|
|
<right_val>-0.2849124968051910</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 2 2 -1.</_>
|
|
<_>
|
|
1 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.2629480625037104e-004</threshold>
|
|
<left_val>0.2231729030609131</left_val>
|
|
<right_val>-0.3981136083602905</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 2 1 -1.</_>
|
|
<_>
|
|
12 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2507449719123542e-004</threshold>
|
|
<left_val>-0.3672328889369965</left_val>
|
|
<right_val>0.1385204941034317</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.0782120823860168e-003</threshold>
|
|
<left_val>-0.6827750802040100</left_val>
|
|
<right_val>0.1098302975296974</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 10 2 -1.</_>
|
|
<_>
|
|
11 2 5 1 2.</_>
|
|
<_>
|
|
6 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0498007684946060</threshold>
|
|
<left_val>-0.7118374705314636</left_val>
|
|
<right_val>0.0958777666091919</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 1 2 -1.</_>
|
|
<_>
|
|
4 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.1072968021035194</threshold>
|
|
<left_val>-0.0198284294456244</left_val>
|
|
<right_val>-2.6988120117187500e+003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 2 2 -1.</_>
|
|
<_>
|
|
20 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.9545628931373358e-003</threshold>
|
|
<left_val>-0.5966340899467468</left_val>
|
|
<right_val>0.1437848955392838</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 2 1 -1.</_>
|
|
<_>
|
|
9 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2507449719123542e-004</threshold>
|
|
<left_val>-0.4219875931739807</left_val>
|
|
<right_val>0.1265437006950378</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 2 2 -1.</_>
|
|
<_>
|
|
20 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0507127307355404</threshold>
|
|
<left_val>0.0368256606161594</left_val>
|
|
<right_val>-0.7281960844993591</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 2 2 -1.</_>
|
|
<_>
|
|
0 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.4936710067559034e-004</threshold>
|
|
<left_val>-0.5385984778404236</left_val>
|
|
<right_val>0.1298418939113617</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 20 4 -1.</_>
|
|
<_>
|
|
12 1 10 2 2.</_>
|
|
<_>
|
|
2 3 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2437365055084229</threshold>
|
|
<left_val>0.0569615103304386</left_val>
|
|
<right_val>-0.7102329134941101</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 5 4 -1.</_>
|
|
<_>
|
|
1 1 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0600150190293789</threshold>
|
|
<left_val>0.2469456046819687</left_val>
|
|
<right_val>-0.2502039074897766</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 4 12 1 -1.</_>
|
|
<_>
|
|
10 4 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0874126628041267</threshold>
|
|
<left_val>0.0585523098707199</left_val>
|
|
<right_val>-0.2872526943683624</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 4 12 1 -1.</_>
|
|
<_>
|
|
6 4 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0909190475940704</threshold>
|
|
<left_val>-0.6881564855575562</left_val>
|
|
<right_val>0.0880744829773903</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 2 6 3 -1.</_>
|
|
<_>
|
|
12 2 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1481955051422119</threshold>
|
|
<left_val>-0.0833467096090317</left_val>
|
|
<right_val>0.5128626227378845</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 6 3 -1.</_>
|
|
<_>
|
|
10 2 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2177619934082031</threshold>
|
|
<left_val>-0.1130203977227211</left_val>
|
|
<right_val>0.4898183941841126</right_val></_></_></trees>
|
|
<stage_threshold>-1.8471280336380005</stage_threshold>
|
|
<parent>2</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 4 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 16 2 -1.</_>
|
|
<_>
|
|
6 1 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2408764064311981</threshold>
|
|
<left_val>-0.5451133251190186</left_val>
|
|
<right_val>0.4999712109565735</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 1 5 4 -1.</_>
|
|
<_>
|
|
13 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0914550274610519</threshold>
|
|
<left_val>-0.5453007221221924</left_val>
|
|
<right_val>0.3651191890239716</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 4 3 -1.</_>
|
|
<_>
|
|
9 0 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0629608929157257</threshold>
|
|
<left_val>-0.4504084885120392</left_val>
|
|
<right_val>0.3127841949462891</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 3 3 -1.</_>
|
|
<_>
|
|
17 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0448659397661686</threshold>
|
|
<left_val>0.3819159865379334</left_val>
|
|
<right_val>-0.4031482040882111</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 1 2 -1.</_>
|
|
<_>
|
|
5 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0137748196721077</threshold>
|
|
<left_val>0.2556776106357575</left_val>
|
|
<right_val>-0.5279502272605896</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 4 3 -1.</_>
|
|
<_>
|
|
10 2 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0309309698641300</threshold>
|
|
<left_val>-0.3218415975570679</left_val>
|
|
<right_val>0.3261575996875763</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 2 2 -1.</_>
|
|
<_>
|
|
1 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8891479596495628e-003</threshold>
|
|
<left_val>-0.5894880890846252</left_val>
|
|
<right_val>0.1343344002962112</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 4 3 1 -1.</_>
|
|
<_>
|
|
18 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.0474298447370529e-003</threshold>
|
|
<left_val>0.1313284933567047</left_val>
|
|
<right_val>-0.6860215067863464</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 3 1 -1.</_>
|
|
<_>
|
|
3 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.5555791631340981e-003</threshold>
|
|
<left_val>0.0981872826814651</left_val>
|
|
<right_val>-0.6792752742767334</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 6 1 -1.</_>
|
|
<_>
|
|
15 0 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1676879152655602e-003</threshold>
|
|
<left_val>0.1139028966426849</left_val>
|
|
<right_val>-0.2320346981287003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 5 2 -1.</_>
|
|
<_>
|
|
4 1 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0164961200207472</threshold>
|
|
<left_val>0.2569769024848938</left_val>
|
|
<right_val>-0.2660340964794159</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 6 1 -1.</_>
|
|
<_>
|
|
15 0 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0964340418577194</threshold>
|
|
<left_val>-0.6803668737411499</left_val>
|
|
<right_val>0.0261034406721592</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 6 1 -1.</_>
|
|
<_>
|
|
5 0 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0101298801600933</threshold>
|
|
<left_val>0.2653768062591553</left_val>
|
|
<right_val>-0.2865482866764069</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 1 -1.</_>
|
|
<_>
|
|
10 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.5491649759933352e-004</threshold>
|
|
<left_val>-0.4500123858451843</left_val>
|
|
<right_val>0.1557054072618485</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 3 1 -1.</_>
|
|
<_>
|
|
4 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0108793601393700</threshold>
|
|
<left_val>0.2852602899074554</left_val>
|
|
<right_val>-0.2204159051179886</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 4 3 1 -1.</_>
|
|
<_>
|
|
19 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0133209601044655</threshold>
|
|
<left_val>-0.6286336183547974</left_val>
|
|
<right_val>0.0756023898720741</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 4 3 1 -1.</_>
|
|
<_>
|
|
2 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.1701131314039230e-003</threshold>
|
|
<left_val>0.1067252978682518</left_val>
|
|
<right_val>-0.5646225214004517</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 5 -1.</_>
|
|
<_>
|
|
9 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1756207942962647</threshold>
|
|
<left_val>0.6023464798927307</left_val>
|
|
<right_val>-0.1105926036834717</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 10 2 -1.</_>
|
|
<_>
|
|
6 2 5 1 2.</_>
|
|
<_>
|
|
11 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0341055616736412</threshold>
|
|
<left_val>0.1336347013711929</left_val>
|
|
<right_val>-0.4956767857074738</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 8 2 -1.</_>
|
|
<_>
|
|
12 2 4 1 2.</_>
|
|
<_>
|
|
8 3 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0643843710422516</threshold>
|
|
<left_val>-0.5880644917488098</left_val>
|
|
<right_val>0.0320239402353764</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 8 2 -1.</_>
|
|
<_>
|
|
6 2 4 1 2.</_>
|
|
<_>
|
|
10 3 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0460324808955193</threshold>
|
|
<left_val>-0.6143289804458618</left_val>
|
|
<right_val>0.0994031131267548</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 5 3 -1.</_>
|
|
<_>
|
|
16 2 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0384022481739521</threshold>
|
|
<left_val>0.1604094058275223</left_val>
|
|
<right_val>-0.1873051971197128</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 21 3 -1.</_>
|
|
<_>
|
|
7 2 7 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.4709807038307190</threshold>
|
|
<left_val>-0.8141909837722778</left_val>
|
|
<right_val>0.0628029108047485</right_val></_></_></trees>
|
|
<stage_threshold>-1.7498610019683838</stage_threshold>
|
|
<parent>3</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 5 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 6 2 -1.</_>
|
|
<_>
|
|
10 2 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.4078958034515381</threshold>
|
|
<left_val>-2.1667710097972304e-004</left_val>
|
|
<right_val>4.0943940429687500e+003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 12 3 -1.</_>
|
|
<_>
|
|
8 0 6 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2218903005123138</threshold>
|
|
<left_val>-0.5719025731086731</left_val>
|
|
<right_val>0.3176411092281342</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 3 3 -1.</_>
|
|
<_>
|
|
4 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0679081231355667</threshold>
|
|
<left_val>0.4214872121810913</left_val>
|
|
<right_val>-0.4698249995708466</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.1082796677947044e-003</threshold>
|
|
<left_val>0.1225956007838249</left_val>
|
|
<right_val>-0.4136815965175629</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 2 3 -1.</_>
|
|
<_>
|
|
10 1 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0175196807831526</threshold>
|
|
<left_val>-0.3862532973289490</left_val>
|
|
<right_val>0.3089705109596252</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 5 4 -1.</_>
|
|
<_>
|
|
17 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0811933875083923</threshold>
|
|
<left_val>-0.6375020742416382</left_val>
|
|
<right_val>0.3839319050312042</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 2 16 2 -1.</_>
|
|
<_>
|
|
6 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1475138068199158</threshold>
|
|
<left_val>-0.4631600081920624</left_val>
|
|
<right_val>0.2451909929513931</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 2 2 1 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.6391459181904793e-003</threshold>
|
|
<left_val>0.2801133990287781</left_val>
|
|
<right_val>-0.3114584088325501</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 2 1 -1.</_>
|
|
<_>
|
|
1 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.5532179279252887e-004</threshold>
|
|
<left_val>0.2138828039169312</left_val>
|
|
<right_val>-0.4466992020606995</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 5 4 -1.</_>
|
|
<_>
|
|
17 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3518253862857819</threshold>
|
|
<left_val>0.0239298101514578</left_val>
|
|
<right_val>-0.8244767785072327</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 5 4 -1.</_>
|
|
<_>
|
|
0 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0724168568849564</threshold>
|
|
<left_val>-0.3899424076080322</left_val>
|
|
<right_val>0.1848614960908890</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 4 1 -1.</_>
|
|
<_>
|
|
13 1 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0123144201934338</threshold>
|
|
<left_val>0.1169440001249313</left_val>
|
|
<right_val>-0.1624529063701630</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 8 2 -1.</_>
|
|
<_>
|
|
7 3 4 1 2.</_>
|
|
<_>
|
|
11 4 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0420644916594028</threshold>
|
|
<left_val>0.1099952012300491</left_val>
|
|
<right_val>-0.7158398032188416</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 12 4 -1.</_>
|
|
<_>
|
|
11 0 6 2 2.</_>
|
|
<_>
|
|
5 2 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1470896005630493</threshold>
|
|
<left_val>0.0647203177213669</left_val>
|
|
<right_val>-0.7278063297271729</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 2 2 -1.</_>
|
|
<_>
|
|
10 3 1 1 2.</_>
|
|
<_>
|
|
11 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.5739437490701675e-003</threshold>
|
|
<left_val>-0.6512069702148438</left_val>
|
|
<right_val>0.0646309629082680</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 2 2 -1.</_>
|
|
<_>
|
|
20 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.4884249432943761e-004</threshold>
|
|
<left_val>-0.3854041993618012</left_val>
|
|
<right_val>0.1037364006042481</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 2 1 -1.</_>
|
|
<_>
|
|
9 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.0264389351941645e-004</threshold>
|
|
<left_val>-0.3517409861087799</left_val>
|
|
<right_val>0.1335210949182510</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 4 3 -1.</_>
|
|
<_>
|
|
15 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0396366305649281</threshold>
|
|
<left_val>0.3242065906524658</left_val>
|
|
<right_val>-0.1959009021520615</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 2 5 -1.</_>
|
|
<_>
|
|
11 0 1 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0399224609136581</threshold>
|
|
<left_val>-0.1189560964703560</left_val>
|
|
<right_val>0.4463477134704590</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 6 4 -1.</_>
|
|
<_>
|
|
11 1 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1424928009510040</threshold>
|
|
<left_val>0.5641438961029053</left_val>
|
|
<right_val>-0.0645077601075172</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 9 4 -1.</_>
|
|
<_>
|
|
9 1 3 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3615724146366119</threshold>
|
|
<left_val>-0.1685543954372406</left_val>
|
|
<right_val>0.3474895954132080</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 2 2 -1.</_>
|
|
<_>
|
|
20 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0400573015213013</threshold>
|
|
<left_val>0.0593593604862690</left_val>
|
|
<right_val>-0.5140206813812256</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 2 2 -1.</_>
|
|
<_>
|
|
0 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.2065549748949707e-004</threshold>
|
|
<left_val>-0.5201929211616516</left_val>
|
|
<right_val>0.1044785976409912</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 3 20 2 -1.</_>
|
|
<_>
|
|
12 3 10 1 2.</_>
|
|
<_>
|
|
2 4 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0759185999631882</threshold>
|
|
<left_val>0.0590211711823940</left_val>
|
|
<right_val>-0.6039643287658691</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 2 1 -1.</_>
|
|
<_>
|
|
4 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.8088903576135635e-003</threshold>
|
|
<left_val>-0.3051787912845612</left_val>
|
|
<right_val>0.1959865987300873</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 4 3 1 -1.</_>
|
|
<_>
|
|
18 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0115059996023774</threshold>
|
|
<left_val>-0.6903548240661621</left_val>
|
|
<right_val>0.0959663167595863</right_val></_></_></trees>
|
|
<stage_threshold>-1.6923429965972900</stage_threshold>
|
|
<parent>4</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 6 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 5 4 -1.</_>
|
|
<_>
|
|
3 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0899427011609077</threshold>
|
|
<left_val>-0.5580319166183472</left_val>
|
|
<right_val>0.3151051104068756</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 1 6 3 -1.</_>
|
|
<_>
|
|
10 1 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1411668062210083</threshold>
|
|
<left_val>-0.3545598089694977</left_val>
|
|
<right_val>0.3423449099063873</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 3 3 -1.</_>
|
|
<_>
|
|
4 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0490742996335030</threshold>
|
|
<left_val>0.2842924892902374</left_val>
|
|
<right_val>-0.4762968122959137</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 18 4 -1.</_>
|
|
<_>
|
|
11 1 9 2 2.</_>
|
|
<_>
|
|
2 3 9 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0889812335371971</threshold>
|
|
<left_val>0.2126241028308868</left_val>
|
|
<right_val>-0.5920116901397705</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 18 2 -1.</_>
|
|
<_>
|
|
8 1 6 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.4573613107204437</threshold>
|
|
<left_val>-0.3411006033420563</left_val>
|
|
<right_val>0.3183233141899109</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.0847789710387588e-004</threshold>
|
|
<left_val>0.0920471474528313</left_val>
|
|
<right_val>-0.1928243935108185</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 1 4 -1.</_>
|
|
<_>
|
|
3 1 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.5638268562033772e-004</threshold>
|
|
<left_val>0.1802701950073242</left_val>
|
|
<right_val>-0.5007755756378174</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0436275489628315</threshold>
|
|
<left_val>-0.7093405723571777</left_val>
|
|
<right_val>0.0261410400271416</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 1 2 -1.</_>
|
|
<_>
|
|
8 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-1.2148039968451485e-004</threshold>
|
|
<left_val>0.1780470013618469</left_val>
|
|
<right_val>-0.3874286115169525</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 2 1 -1.</_>
|
|
<_>
|
|
16 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.6614202223718166e-003</threshold>
|
|
<left_val>0.0952365696430206</left_val>
|
|
<right_val>-0.6419975161552429</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 2 1 -1.</_>
|
|
<_>
|
|
5 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0101335803046823</threshold>
|
|
<left_val>0.0453622788190842</left_val>
|
|
<right_val>-0.7391591072082520</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 2 3 3 -1.</_>
|
|
<_>
|
|
17 2 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.4527491815388203e-003</threshold>
|
|
<left_val>0.3466396927833557</left_val>
|
|
<right_val>-0.4109731018543243</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 12 4 -1.</_>
|
|
<_>
|
|
5 0 6 2 2.</_>
|
|
<_>
|
|
11 2 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1865476965904236</threshold>
|
|
<left_val>0.0465162917971611</left_val>
|
|
<right_val>-0.7623959183692932</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 16 4 -1.</_>
|
|
<_>
|
|
10 1 8 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3488784134387970</threshold>
|
|
<left_val>0.0447669401764870</left_val>
|
|
<right_val>-0.3729743957519531</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.0129990130662918e-003</threshold>
|
|
<left_val>0.0924227014183998</left_val>
|
|
<right_val>-0.5618343949317932</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 5 3 -1.</_>
|
|
<_>
|
|
15 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0786369368433952</threshold>
|
|
<left_val>0.4578678905963898</left_val>
|
|
<right_val>-0.1665771007537842</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
11 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1211623996496201</threshold>
|
|
<left_val>-0.0831817314028740</left_val>
|
|
<right_val>0.5231279730796814</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 3 5 2 -1.</_>
|
|
<_>
|
|
13 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.8915069522336125e-003</threshold>
|
|
<left_val>-0.4330990016460419</left_val>
|
|
<right_val>0.1231160014867783</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 9 1 -1.</_>
|
|
<_>
|
|
9 0 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0347660891711712</threshold>
|
|
<left_val>-0.3878085017204285</left_val>
|
|
<right_val>0.1319140046834946</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 4 3 -1.</_>
|
|
<_>
|
|
16 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0523517988622189</threshold>
|
|
<left_val>-0.0746845230460167</left_val>
|
|
<right_val>0.4756622910499573</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 1 4 -1.</_>
|
|
<_>
|
|
6 1 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0303400792181492</threshold>
|
|
<left_val>0.1988417953252792</left_val>
|
|
<right_val>-0.2310146987438202</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 2 -1.</_>
|
|
<_>
|
|
15 2 1 1 2.</_>
|
|
<_>
|
|
14 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.8641840480268002e-003</threshold>
|
|
<left_val>-0.0894825384020805</left_val>
|
|
<right_val>0.2937439978122711</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 4 12 1 -1.</_>
|
|
<_>
|
|
6 4 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0714182108640671</threshold>
|
|
<left_val>-0.5831571817398071</left_val>
|
|
<right_val>0.0824320167303085</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 3 16 2 -1.</_>
|
|
<_>
|
|
11 3 8 1 2.</_>
|
|
<_>
|
|
3 4 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0846038311719894</threshold>
|
|
<left_val>-0.7170382738113403</left_val>
|
|
<right_val>0.0465656407177448</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 4 3 -1.</_>
|
|
<_>
|
|
3 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0594934485852718</threshold>
|
|
<left_val>0.3473120033740997</left_val>
|
|
<right_val>-0.1196561008691788</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 4 3 -1.</_>
|
|
<_>
|
|
16 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1099494025111198</threshold>
|
|
<left_val>-7.9890703782439232e-003</left_val>
|
|
<right_val>0.3411171138286591</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 4 3 -1.</_>
|
|
<_>
|
|
2 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0491113886237144</threshold>
|
|
<left_val>-0.1024158969521523</left_val>
|
|
<right_val>0.4681828022003174</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 9 3 -1.</_>
|
|
<_>
|
|
10 2 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3636780977249146</threshold>
|
|
<left_val>-0.0831590816378593</left_val>
|
|
<right_val>0.3714585900306702</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 5 -1.</_>
|
|
<_>
|
|
11 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1586533933877945</threshold>
|
|
<left_val>0.5047429800033569</left_val>
|
|
<right_val>-0.0834626629948616</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 4 2 -1.</_>
|
|
<_>
|
|
12 3 2 1 2.</_>
|
|
<_>
|
|
10 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0251513607800007</threshold>
|
|
<left_val>-0.4532653093338013</left_val>
|
|
<right_val>0.0780590176582336</right_val></_></_></trees>
|
|
<stage_threshold>-1.6187490224838257</stage_threshold>
|
|
<parent>5</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 7 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 16 2 -1.</_>
|
|
<_>
|
|
6 1 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1649594008922577</threshold>
|
|
<left_val>-0.6332700848579407</left_val>
|
|
<right_val>0.2166659981012344</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 5 4 -1.</_>
|
|
<_>
|
|
13 1 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0438757613301277</threshold>
|
|
<left_val>0.3239826858043671</left_val>
|
|
<right_val>-0.5365409255027771</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 3 2 -1.</_>
|
|
<_>
|
|
0 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.6001587808132172e-003</threshold>
|
|
<left_val>-0.5327348709106445</left_val>
|
|
<right_val>0.1838084012269974</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 6 5 -1.</_>
|
|
<_>
|
|
10 0 3 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0787055194377899</threshold>
|
|
<left_val>-0.3804650902748108</left_val>
|
|
<right_val>0.0857776030898094</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 3 1 -1.</_>
|
|
<_>
|
|
4 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.9123762920498848e-003</threshold>
|
|
<left_val>0.3097468018531799</left_val>
|
|
<right_val>-0.3024269938468933</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 6 4 -1.</_>
|
|
<_>
|
|
10 0 3 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2142370939254761</threshold>
|
|
<left_val>-0.1307654976844788</left_val>
|
|
<right_val>0.1546590030193329</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 12 1 -1.</_>
|
|
<_>
|
|
10 2 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0385532900691032</threshold>
|
|
<left_val>-0.4112997949123383</left_val>
|
|
<right_val>0.2216213941574097</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 2 1 2 -1.</_>
|
|
<_>
|
|
21 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.4947660858742893e-004</threshold>
|
|
<left_val>-0.3958852887153626</left_val>
|
|
<right_val>0.1867167949676514</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 2 1 -1.</_>
|
|
<_>
|
|
5 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3194089590106159e-004</threshold>
|
|
<left_val>0.2296389937400818</left_val>
|
|
<right_val>-0.2885102033615112</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0102821402251720</threshold>
|
|
<left_val>0.0711410716176033</left_val>
|
|
<right_val>-0.7497838139533997</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 5 2 -1.</_>
|
|
<_>
|
|
0 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0198998004198074</threshold>
|
|
<left_val>-0.3733910024166107</left_val>
|
|
<right_val>0.1427987068891525</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 22 2 -1.</_>
|
|
<_>
|
|
11 3 11 1 2.</_>
|
|
<_>
|
|
0 4 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0910358279943466</threshold>
|
|
<left_val>0.0707562267780304</left_val>
|
|
<right_val>-0.6638950705528259</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 3 4 -1.</_>
|
|
<_>
|
|
10 1 1 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0393848381936550</threshold>
|
|
<left_val>-0.2262676954269409</left_val>
|
|
<right_val>0.2464784979820252</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 3 5 2 -1.</_>
|
|
<_>
|
|
13 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0109996302053332</threshold>
|
|
<left_val>-0.2625407874584198</left_val>
|
|
<right_val>0.1163086965680122</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 10 2 -1.</_>
|
|
<_>
|
|
6 0 5 1 2.</_>
|
|
<_>
|
|
11 1 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0518086813390255</threshold>
|
|
<left_val>-0.5961403250694275</left_val>
|
|
<right_val>0.0859828814864159</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 5 3 -1.</_>
|
|
<_>
|
|
16 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0737882182002068</threshold>
|
|
<left_val>0.2593846023082733</left_val>
|
|
<right_val>-0.1041978970170021</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 5 3 -1.</_>
|
|
<_>
|
|
1 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0469907410442829</threshold>
|
|
<left_val>-0.1350554972887039</left_val>
|
|
<right_val>0.4308831989765167</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.7187450155615807e-003</threshold>
|
|
<left_val>-0.6842281222343445</left_val>
|
|
<right_val>0.1098759025335312</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 2 3 -1.</_>
|
|
<_>
|
|
1 2 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.5397530882619321e-004</threshold>
|
|
<left_val>0.1443437933921814</left_val>
|
|
<right_val>-0.3249225914478302</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0142436400055885</threshold>
|
|
<left_val>0.0255800206214190</left_val>
|
|
<right_val>-0.7005106210708618</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
11 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1305900961160660</threshold>
|
|
<left_val>0.4823197126388550</left_val>
|
|
<right_val>-0.0978557989001274</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0177217200398445</threshold>
|
|
<left_val>-0.7623056173324585</left_val>
|
|
<right_val>0.0316688083112240</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.2830806970596313e-003</threshold>
|
|
<left_val>-0.5619375705718994</left_val>
|
|
<right_val>0.0765757337212563</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 2 1 -1.</_>
|
|
<_>
|
|
12 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.4865049635991454e-004</threshold>
|
|
<left_val>-0.4124997854232788</left_val>
|
|
<right_val>0.1330009996891022</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 3 1 -1.</_>
|
|
<_>
|
|
5 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0147960502654314</threshold>
|
|
<left_val>-0.6981794238090515</left_val>
|
|
<right_val>0.0525363907217979</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 3 5 2 -1.</_>
|
|
<_>
|
|
13 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1445972025394440</threshold>
|
|
<left_val>8.0330166965723038e-003</left_val>
|
|
<right_val>-0.8675752878189087</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 3 5 2 -1.</_>
|
|
<_>
|
|
4 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0157956108450890</threshold>
|
|
<left_val>-0.2927311062812805</left_val>
|
|
<right_val>0.1363624930381775</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 3 1 -1.</_>
|
|
<_>
|
|
15 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0131048103794456</threshold>
|
|
<left_val>-0.2231092005968094</left_val>
|
|
<right_val>0.5772743821144104</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 6 5 -1.</_>
|
|
<_>
|
|
11 0 3 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2230173945426941</threshold>
|
|
<left_val>-0.0933012813329697</left_val>
|
|
<right_val>0.4945294857025147</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 6 1 -1.</_>
|
|
<_>
|
|
18 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0496648699045181</threshold>
|
|
<left_val>-0.5187855958938599</left_val>
|
|
<right_val>0.0345804914832115</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 4 6 1 -1.</_>
|
|
<_>
|
|
2 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0459476113319397</threshold>
|
|
<left_val>-0.6596763730049133</left_val>
|
|
<right_val>0.0588447116315365</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 4 2 -1.</_>
|
|
<_>
|
|
20 0 2 1 2.</_>
|
|
<_>
|
|
18 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0104044098407030</threshold>
|
|
<left_val>0.2622630894184113</left_val>
|
|
<right_val>-0.1861764937639237</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 4 6 1 -1.</_>
|
|
<_>
|
|
10 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0291253700852394</threshold>
|
|
<left_val>-0.1883364021778107</left_val>
|
|
<right_val>0.2108985930681229</right_val></_></_></trees>
|
|
<stage_threshold>-1.6774560213088989</stage_threshold>
|
|
<parent>6</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 8 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 3 1 -1.</_>
|
|
<_>
|
|
5 1 1 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0276011899113655</threshold>
|
|
<left_val>0.2859902083873749</left_val>
|
|
<right_val>-0.4109694063663483</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 14 1 -1.</_>
|
|
<_>
|
|
6 2 7 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0378576517105103</threshold>
|
|
<left_val>-0.4589497148990631</left_val>
|
|
<right_val>0.1315708011388779</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 2 14 1 -1.</_>
|
|
<_>
|
|
9 2 7 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0878514498472214</threshold>
|
|
<left_val>-0.4639217853546143</left_val>
|
|
<right_val>0.2676733136177063</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 2 2 1 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.6995318047702312e-003</threshold>
|
|
<left_val>0.3444162905216217</left_val>
|
|
<right_val>-0.3575634062290192</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 2 2 -1.</_>
|
|
<_>
|
|
3 1 1 1 2.</_>
|
|
<_>
|
|
4 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1192200074438006e-004</threshold>
|
|
<left_val>0.2853515148162842</left_val>
|
|
<right_val>-0.2509905099868774</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 1 5 4 -1.</_>
|
|
<_>
|
|
13 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0733317583799362</threshold>
|
|
<left_val>-0.5104925036430359</left_val>
|
|
<right_val>0.2084199935197830</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0705135166645050</threshold>
|
|
<left_val>-0.2943550050258637</left_val>
|
|
<right_val>0.2490831017494202</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 1 2 -1.</_>
|
|
<_>
|
|
20 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.4877820396795869e-004</threshold>
|
|
<left_val>-0.4530136883258820</left_val>
|
|
<right_val>0.1106069982051849</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 2 2 -1.</_>
|
|
<_>
|
|
0 1 1 1 2.</_>
|
|
<_>
|
|
1 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.4712569322437048e-003</threshold>
|
|
<left_val>0.2818650007247925</left_val>
|
|
<right_val>-0.2202538996934891</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 2 1 -1.</_>
|
|
<_>
|
|
13 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.4717900669202209e-004</threshold>
|
|
<left_val>-0.2456589937210083</left_val>
|
|
<right_val>0.0864437595009804</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 4 1 -1.</_>
|
|
<_>
|
|
9 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2986420188099146e-004</threshold>
|
|
<left_val>-0.3502730131149292</left_val>
|
|
<right_val>0.1467843949794769</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 3 3 2 -1.</_>
|
|
<_>
|
|
19 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0690452903509140</threshold>
|
|
<left_val>0.0304644200950861</left_val>
|
|
<right_val>-0.6050962805747986</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 3 2 -1.</_>
|
|
<_>
|
|
0 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.7935361140407622e-004</threshold>
|
|
<left_val>-0.6039000153541565</left_val>
|
|
<right_val>0.0861184969544411</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 12 4 -1.</_>
|
|
<_>
|
|
11 0 6 2 2.</_>
|
|
<_>
|
|
5 2 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1428222954273224</threshold>
|
|
<left_val>-0.5724645256996155</left_val>
|
|
<right_val>0.0726439207792282</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 5 4 -1.</_>
|
|
<_>
|
|
4 1 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0361952185630798</threshold>
|
|
<left_val>0.1450850069522858</left_val>
|
|
<right_val>-0.2987934052944183</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 3 -1.</_>
|
|
<_>
|
|
16 1 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0306622795760632</threshold>
|
|
<left_val>0.2218796014785767</left_val>
|
|
<right_val>-0.1656057983636856</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 3 3 -1.</_>
|
|
<_>
|
|
3 1 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0419924110174179</threshold>
|
|
<left_val>-0.1077400967478752</left_val>
|
|
<right_val>0.4818230867385864</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 10 2 -1.</_>
|
|
<_>
|
|
12 2 5 1 2.</_>
|
|
<_>
|
|
7 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0799415111541748</threshold>
|
|
<left_val>-0.4717141985893250</left_val>
|
|
<right_val>0.0374956503510475</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 10 2 -1.</_>
|
|
<_>
|
|
5 2 5 1 2.</_>
|
|
<_>
|
|
10 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0640278682112694</threshold>
|
|
<left_val>-0.6457813978195190</left_val>
|
|
<right_val>0.0705836564302444</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 4 1 -1.</_>
|
|
<_>
|
|
15 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1864910377189517e-004</threshold>
|
|
<left_val>0.1457661986351013</left_val>
|
|
<right_val>-0.2679316103458405</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0141139999032021</threshold>
|
|
<left_val>-0.7731025218963623</left_val>
|
|
<right_val>0.0430315397679806</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 4 1 -1.</_>
|
|
<_>
|
|
15 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0275833904743195</threshold>
|
|
<left_val>-0.4605224132537842</left_val>
|
|
<right_val>0.0125418798997998</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 5 4 -1.</_>
|
|
<_>
|
|
4 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3208009004592896</threshold>
|
|
<left_val>0.0386559292674065</left_val>
|
|
<right_val>-0.8062068819999695</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 4 3 -1.</_>
|
|
<_>
|
|
16 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0358313098549843</threshold>
|
|
<left_val>-0.0662941709160805</left_val>
|
|
<right_val>0.3263883888721466</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 4 3 -1.</_>
|
|
<_>
|
|
2 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0798180103302002</threshold>
|
|
<left_val>0.4167965948581696</left_val>
|
|
<right_val>-0.0912656933069229</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 3 1 -1.</_>
|
|
<_>
|
|
15 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6545161381363869e-004</threshold>
|
|
<left_val>0.1101180985569954</left_val>
|
|
<right_val>-0.1570180058479309</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 4 1 -1.</_>
|
|
<_>
|
|
5 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.4198470055125654e-004</threshold>
|
|
<left_val>0.1352030038833618</left_val>
|
|
<right_val>-0.2412625998258591</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.9970320910215378e-003</threshold>
|
|
<left_val>0.0612093694508076</left_val>
|
|
<right_val>-0.4995999932289124</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 18 1 -1.</_>
|
|
<_>
|
|
9 1 9 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1872068941593170</threshold>
|
|
<left_val>0.0565490201115608</left_val>
|
|
<right_val>-0.5114173293113709</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 3 1 -1.</_>
|
|
<_>
|
|
16 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0253924299031496</threshold>
|
|
<left_val>0.0129433795809746</left_val>
|
|
<right_val>-0.5729435086250305</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 3 1 -1.</_>
|
|
<_>
|
|
6 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0195981692522764</threshold>
|
|
<left_val>-0.0810285732150078</left_val>
|
|
<right_val>0.4177010953426361</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 3 1 -1.</_>
|
|
<_>
|
|
16 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0305633507668972</threshold>
|
|
<left_val>-0.7735412716865540</left_val>
|
|
<right_val>0.0178344994783401</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 3 1 -1.</_>
|
|
<_>
|
|
5 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0175109803676605</threshold>
|
|
<left_val>-0.5898250937461853</left_val>
|
|
<right_val>0.0511760301887989</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 2 2 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_>
|
|
<_>
|
|
19 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.0173909664154053e-003</threshold>
|
|
<left_val>-0.0888880565762520</left_val>
|
|
<right_val>0.2514989078044891</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 3 1 -1.</_>
|
|
<_>
|
|
2 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0300783291459084</threshold>
|
|
<left_val>-0.0514235198497772</left_val>
|
|
<right_val>0.6026620864868164</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 4 3 1 -1.</_>
|
|
<_>
|
|
18 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0126525200903416</threshold>
|
|
<left_val>0.0528747402131557</left_val>
|
|
<right_val>-0.6824123263359070</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 1 -1.</_>
|
|
<_>
|
|
10 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2671189324464649e-004</threshold>
|
|
<left_val>-0.3352496922016144</left_val>
|
|
<right_val>0.0812006071209908</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 6 3 -1.</_>
|
|
<_>
|
|
12 1 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1868032962083817</threshold>
|
|
<left_val>-0.0543627701699734</left_val>
|
|
<right_val>0.5235478281974793</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 6 3 -1.</_>
|
|
<_>
|
|
8 1 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1757044047117233</threshold>
|
|
<left_val>-0.0570032894611359</left_val>
|
|
<right_val>0.6137328147888184</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 21 3 -1.</_>
|
|
<_>
|
|
8 2 7 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0384310483932495</threshold>
|
|
<left_val>0.0551427192986012</left_val>
|
|
<right_val>-0.6189894080162048</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 3 2 -1.</_>
|
|
<_>
|
|
9 0 3 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.6805290728807449e-003</threshold>
|
|
<left_val>-0.3422321081161499</left_val>
|
|
<right_val>0.0896903723478317</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 4 3 1 -1.</_>
|
|
<_>
|
|
18 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0155965797603130</threshold>
|
|
<left_val>-0.6740226745605469</left_val>
|
|
<right_val>0.0233169402927160</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 3 5 2 -1.</_>
|
|
<_>
|
|
4 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.3065250180661678e-003</threshold>
|
|
<left_val>-0.3375357985496521</left_val>
|
|
<right_val>0.0814909264445305</right_val></_></_></trees>
|
|
<stage_threshold>-1.5980160236358643</stage_threshold>
|
|
<parent>7</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 9 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 10 2 -1.</_>
|
|
<_>
|
|
8 1 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1805859059095383</threshold>
|
|
<left_val>-0.5300660729408264</left_val>
|
|
<right_val>0.3023838102817535</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 2 3 3 -1.</_>
|
|
<_>
|
|
17 2 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0141021898016334</threshold>
|
|
<left_val>0.3699227869510651</left_val>
|
|
<right_val>-0.3241744935512543</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 3 3 -1.</_>
|
|
<_>
|
|
4 2 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0108758499845862</threshold>
|
|
<left_val>0.2569321095943451</left_val>
|
|
<right_val>-0.3242481946945190</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 1 2 3 -1.</_>
|
|
<_>
|
|
11 1 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0194290298968554</threshold>
|
|
<left_val>-0.2157842963933945</left_val>
|
|
<right_val>0.2595477998256683</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 1 2 -1.</_>
|
|
<_>
|
|
8 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.3504539169371128e-004</threshold>
|
|
<left_val>0.1525973975658417</left_val>
|
|
<right_val>-0.4900175929069519</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 20 1 -1.</_>
|
|
<_>
|
|
6 2 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1486748009920120</threshold>
|
|
<left_val>-0.2519808113574982</left_val>
|
|
<right_val>0.2343989014625549</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 1 4 4 -1.</_>
|
|
<_>
|
|
8 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0196727998554707</threshold>
|
|
<left_val>0.2408549040555954</left_val>
|
|
<right_val>-0.2088024020195007</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 2 1 -1.</_>
|
|
<_>
|
|
13 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.9412939329631627e-004</threshold>
|
|
<left_val>-0.2093092948198319</left_val>
|
|
<right_val>0.0832172483205795</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 5 3 -1.</_>
|
|
<_>
|
|
0 2 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0493621714413166</threshold>
|
|
<left_val>0.1794568002223969</left_val>
|
|
<right_val>-0.2633988857269287</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 2 1 -1.</_>
|
|
<_>
|
|
13 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0261217802762985</threshold>
|
|
<left_val>0.0257237199693918</left_val>
|
|
<right_val>-0.7157145142555237</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 2 1 -1.</_>
|
|
<_>
|
|
8 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5359389837831259e-004</threshold>
|
|
<left_val>-0.3620828092098236</left_val>
|
|
<right_val>0.1422941982746124</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 20 4 -1.</_>
|
|
<_>
|
|
12 1 10 2 2.</_>
|
|
<_>
|
|
2 3 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0235242508351803</threshold>
|
|
<left_val>0.1308255940675736</left_val>
|
|
<right_val>-0.3133119940757752</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 2 2 -1.</_>
|
|
<_>
|
|
0 3 1 1 2.</_>
|
|
<_>
|
|
1 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8964199009351432e-004</threshold>
|
|
<left_val>-0.2955313920974731</left_val>
|
|
<right_val>0.1612772941589356</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 3 1 2 -1.</_>
|
|
<_>
|
|
21 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.6771971285343170e-003</threshold>
|
|
<left_val>-0.5337281823158264</left_val>
|
|
<right_val>0.0379088483750820</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 1 2 -1.</_>
|
|
<_>
|
|
0 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.7393171330913901e-004</threshold>
|
|
<left_val>-0.3874318897724152</left_val>
|
|
<right_val>0.1068056002259255</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 5 3 -1.</_>
|
|
<_>
|
|
15 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0495587587356567</threshold>
|
|
<left_val>0.2524808943271637</left_val>
|
|
<right_val>-0.1970293968915939</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 1 4 -1.</_>
|
|
<_>
|
|
0 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0312841311097145</threshold>
|
|
<left_val>-0.5490162968635559</left_val>
|
|
<right_val>0.0832718536257744</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 1 4 -1.</_>
|
|
<_>
|
|
21 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0513014905154705</threshold>
|
|
<left_val>0.0564396493136883</left_val>
|
|
<right_val>-0.3952826857566834</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 3 10 2 -1.</_>
|
|
<_>
|
|
5 3 5 1 2.</_>
|
|
<_>
|
|
10 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0658741071820259</threshold>
|
|
<left_val>-0.6600760817527771</left_val>
|
|
<right_val>0.0510393418371677</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 1 2 -1.</_>
|
|
<_>
|
|
15 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0428369902074337</threshold>
|
|
<left_val>-0.4695188999176025</left_val>
|
|
<right_val>0.0248056892305613</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 4 2 -1.</_>
|
|
<_>
|
|
6 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0398169495165348</threshold>
|
|
<left_val>-0.5390306711196899</left_val>
|
|
<right_val>0.0625655874609947</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 21 3 -1.</_>
|
|
<_>
|
|
8 1 7 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.9633435010910034</threshold>
|
|
<left_val>0.0700931474566460</left_val>
|
|
<right_val>-0.5051229000091553</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 6 2 -1.</_>
|
|
<_>
|
|
3 3 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0903004035353661</threshold>
|
|
<left_val>-0.6060277223587036</left_val>
|
|
<right_val>0.0478441901504993</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 16 1 -1.</_>
|
|
<_>
|
|
10 2 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1164717003703117</threshold>
|
|
<left_val>0.0378020592033863</left_val>
|
|
<right_val>-0.4255815148353577</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 16 1 -1.</_>
|
|
<_>
|
|
4 2 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1410460025072098</threshold>
|
|
<left_val>0.0533077791333199</left_val>
|
|
<right_val>-0.6477444171905518</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 18 3 -1.</_>
|
|
<_>
|
|
8 2 6 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2245392948389053</threshold>
|
|
<left_val>-0.7423505783081055</left_val>
|
|
<right_val>0.0394205302000046</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 3 1 -1.</_>
|
|
<_>
|
|
3 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0122074596583843</threshold>
|
|
<left_val>0.0411594882607460</left_val>
|
|
<right_val>-0.6247044801712036</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 10 4 -1.</_>
|
|
<_>
|
|
11 0 5 2 2.</_>
|
|
<_>
|
|
6 2 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1298917979001999</threshold>
|
|
<left_val>-0.5020244121551514</left_val>
|
|
<right_val>0.0506085492670536</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 12 4 -1.</_>
|
|
<_>
|
|
5 0 6 2 2.</_>
|
|
<_>
|
|
11 2 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1336773037910461</threshold>
|
|
<left_val>-0.5980725884437561</left_val>
|
|
<right_val>0.0515021793544292</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 3 1 -1.</_>
|
|
<_>
|
|
15 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7120931190438569e-004</threshold>
|
|
<left_val>0.0942272767424583</left_val>
|
|
<right_val>-0.1869352012872696</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
11 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1016910001635552</threshold>
|
|
<left_val>0.3284361064434052</left_val>
|
|
<right_val>-0.0879324078559875</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 5 -1.</_>
|
|
<_>
|
|
9 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1026913970708847</threshold>
|
|
<left_val>0.3691394925117493</left_val>
|
|
<right_val>-0.0939211919903755</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 3 1 -1.</_>
|
|
<_>
|
|
1 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0103968000039458</threshold>
|
|
<left_val>0.2735032141208649</left_val>
|
|
<right_val>-0.1099518015980721</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 3 1 -1.</_>
|
|
<_>
|
|
15 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0216865707188845</threshold>
|
|
<left_val>-0.5431079864501953</left_val>
|
|
<right_val>0.0354094617068768</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 3 1 -1.</_>
|
|
<_>
|
|
2 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0109911598265171</threshold>
|
|
<left_val>0.3313341140747070</left_val>
|
|
<right_val>-0.0947989076375961</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 4 3 -1.</_>
|
|
<_>
|
|
16 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0330941900610924</threshold>
|
|
<left_val>-0.0676039010286331</left_val>
|
|
<right_val>0.3759680092334747</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 3 1 -1.</_>
|
|
<_>
|
|
6 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0112865697592497</threshold>
|
|
<left_val>0.0597827509045601</left_val>
|
|
<right_val>-0.5113244056701660</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 1 2 -1.</_>
|
|
<_>
|
|
15 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0276136603206396</threshold>
|
|
<left_val>-0.1408299952745438</left_val>
|
|
<right_val>0.0276922807097435</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 2 1 -1.</_>
|
|
<_>
|
|
7 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0249390397220850</threshold>
|
|
<left_val>-0.3940435945987701</left_val>
|
|
<right_val>0.0746763870120049</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 6 2 -1.</_>
|
|
<_>
|
|
11 3 3 1 2.</_>
|
|
<_>
|
|
8 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0205240696668625</threshold>
|
|
<left_val>-0.3604283034801483</left_val>
|
|
<right_val>0.0740412473678589</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 2 2 -1.</_>
|
|
<_>
|
|
6 1 1 1 2.</_>
|
|
<_>
|
|
7 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.4007459916174412e-003</threshold>
|
|
<left_val>0.2836787998676300</left_val>
|
|
<right_val>-0.1014788970351219</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 18 3 -1.</_>
|
|
<_>
|
|
10 3 6 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.6708089709281921</threshold>
|
|
<left_val>0.0458825901150703</left_val>
|
|
<right_val>-0.3361695110797882</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 1 2 -1.</_>
|
|
<_>
|
|
8 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0396798886358738</threshold>
|
|
<left_val>-0.5256633162498474</left_val>
|
|
<right_val>0.0545992814004421</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 4 3 -1.</_>
|
|
<_>
|
|
16 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0873271971940994</threshold>
|
|
<left_val>0.1675004065036774</left_val>
|
|
<right_val>-0.0436225607991219</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 4 3 -1.</_>
|
|
<_>
|
|
2 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0646117925643921</threshold>
|
|
<left_val>-0.0736591815948486</left_val>
|
|
<right_val>0.3831464052200317</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 12 5 -1.</_>
|
|
<_>
|
|
13 0 6 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2210538983345032</threshold>
|
|
<left_val>0.1044782996177673</left_val>
|
|
<right_val>-0.1711664050817490</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 5 4 -1.</_>
|
|
<_>
|
|
3 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0539337508380413</threshold>
|
|
<left_val>-0.2961969971656799</left_val>
|
|
<right_val>0.0962876006960869</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 18 2 -1.</_>
|
|
<_>
|
|
13 2 9 1 2.</_>
|
|
<_>
|
|
4 3 9 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0275479797273874</threshold>
|
|
<left_val>0.1263362020254135</left_val>
|
|
<right_val>-0.1437083035707474</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 4 10 1 -1.</_>
|
|
<_>
|
|
6 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0796272605657578</threshold>
|
|
<left_val>-0.6720743179321289</left_val>
|
|
<right_val>0.0428085103631020</right_val></_></_></trees>
|
|
<stage_threshold>-1.5710469484329224</stage_threshold>
|
|
<parent>8</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 10 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 18 2 -1.</_>
|
|
<_>
|
|
8 1 6 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3998445868492127</threshold>
|
|
<left_val>-0.4929730892181397</left_val>
|
|
<right_val>0.2782056927680969</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 2 3 2 -1.</_>
|
|
<_>
|
|
17 2 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0119401095435023</threshold>
|
|
<left_val>0.2959083914756775</left_val>
|
|
<right_val>-0.2993519008159638</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 2 1 -1.</_>
|
|
<_>
|
|
9 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.0412777606397867e-004</threshold>
|
|
<left_val>-0.5137457251548767</left_val>
|
|
<right_val>0.1482059955596924</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 3 3 -1.</_>
|
|
<_>
|
|
17 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0688273012638092</threshold>
|
|
<left_val>0.3283458054065704</left_val>
|
|
<right_val>-0.2109878957271576</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 2 1 -1.</_>
|
|
<_>
|
|
1 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6670019142329693e-003</threshold>
|
|
<left_val>0.1691143065690994</left_val>
|
|
<right_val>-0.3861491084098816</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 4 6 1 -1.</_>
|
|
<_>
|
|
10 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0176661405712366</threshold>
|
|
<left_val>-0.2767274081707001</left_val>
|
|
<right_val>0.2180189043283463</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 1 2 -1.</_>
|
|
<_>
|
|
4 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.4831801466643810e-003</threshold>
|
|
<left_val>-0.3848891854286194</left_val>
|
|
<right_val>0.1618614047765732</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 3 1 -1.</_>
|
|
<_>
|
|
12 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0162510108202696</threshold>
|
|
<left_val>-0.4621725976467133</left_val>
|
|
<right_val>0.0491471998393536</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 1 -1.</_>
|
|
<_>
|
|
10 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9933170774020255e-004</threshold>
|
|
<left_val>-0.4533613026142120</left_val>
|
|
<right_val>0.1046027988195419</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 2 3 3 -1.</_>
|
|
<_>
|
|
17 2 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0152971800416708</threshold>
|
|
<left_val>-0.1411347985267639</left_val>
|
|
<right_val>0.1143492013216019</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 3 3 -1.</_>
|
|
<_>
|
|
4 2 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.3068820163607597e-003</threshold>
|
|
<left_val>0.1626427024602890</left_val>
|
|
<right_val>-0.3108170926570892</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 1 -1.</_>
|
|
<_>
|
|
17 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0127446297556162</threshold>
|
|
<left_val>-0.6617395281791687</left_val>
|
|
<right_val>0.0678442120552063</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 16 4 -1.</_>
|
|
<_>
|
|
2 0 8 2 2.</_>
|
|
<_>
|
|
10 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1055942028760910</threshold>
|
|
<left_val>-0.5133383274078369</left_val>
|
|
<right_val>0.0710626021027565</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 1 -1.</_>
|
|
<_>
|
|
17 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0219584405422211</threshold>
|
|
<left_val>0.0136620104312897</left_val>
|
|
<right_val>-0.5351728200912476</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 4 2 -1.</_>
|
|
<_>
|
|
0 4 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0160341896116734</threshold>
|
|
<left_val>-0.3528763949871063</left_val>
|
|
<right_val>0.1049050986766815</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 2 3 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.5577318891882896e-003</threshold>
|
|
<left_val>0.2148994952440262</left_val>
|
|
<right_val>-0.1989417970180512</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 3 1 -1.</_>
|
|
<_>
|
|
4 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0119234798476100</threshold>
|
|
<left_val>-0.5207656025886536</left_val>
|
|
<right_val>0.0676394701004028</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 22 2 -1.</_>
|
|
<_>
|
|
11 3 11 1 2.</_>
|
|
<_>
|
|
0 4 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0866749063134193</threshold>
|
|
<left_val>0.0580227002501488</left_val>
|
|
<right_val>-0.5696936249732971</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 2 1 -1.</_>
|
|
<_>
|
|
4 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3583239817526191e-004</threshold>
|
|
<left_val>0.1667681038379669</left_val>
|
|
<right_val>-0.2129307985305786</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 2 2 -1.</_>
|
|
<_>
|
|
12 0 1 1 2.</_>
|
|
<_>
|
|
11 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.2656060173176229e-004</threshold>
|
|
<left_val>-0.1072390004992485</left_val>
|
|
<right_val>0.0803407803177834</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 8 2 -1.</_>
|
|
<_>
|
|
7 0 4 1 2.</_>
|
|
<_>
|
|
11 1 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0386192686855793</threshold>
|
|
<left_val>-0.4828197956085205</left_val>
|
|
<right_val>0.0643176063895226</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 2 2 -1.</_>
|
|
<_>
|
|
15 1 1 1 2.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.6343471147119999e-003</threshold>
|
|
<left_val>0.1646926999092102</left_val>
|
|
<right_val>-0.1258600950241089</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 8 4 -1.</_>
|
|
<_>
|
|
8 1 4 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1356738954782486</threshold>
|
|
<left_val>0.6871178150177002</left_val>
|
|
<right_val>-0.0454019382596016</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 1 4 -1.</_>
|
|
<_>
|
|
21 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.9284181334078312e-003</threshold>
|
|
<left_val>-0.4460243880748749</left_val>
|
|
<right_val>0.0777442976832390</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 3 2 -1.</_>
|
|
<_>
|
|
6 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0387219600379467</threshold>
|
|
<left_val>-0.7954596281051636</left_val>
|
|
<right_val>0.0272730290889740</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 2 2 -1.</_>
|
|
<_>
|
|
15 1 1 1 2.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.7111990493722260e-004</threshold>
|
|
<left_val>-0.0614648200571537</left_val>
|
|
<right_val>0.0866360515356064</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 2 2 -1.</_>
|
|
<_>
|
|
6 1 1 1 2.</_>
|
|
<_>
|
|
7 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.9391563087701797e-003</threshold>
|
|
<left_val>0.3204261958599091</left_val>
|
|
<right_val>-0.0944261327385902</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 9 4 -1.</_>
|
|
<_>
|
|
12 1 3 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.4060023128986359</threshold>
|
|
<left_val>-0.0145072499290109</left_val>
|
|
<right_val>0.4007146060466766</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 9 4 -1.</_>
|
|
<_>
|
|
7 1 3 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3527463972568512</threshold>
|
|
<left_val>-0.0487828403711319</left_val>
|
|
<right_val>0.5863348841667175</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 3 2 2 -1.</_>
|
|
<_>
|
|
12 3 1 1 2.</_>
|
|
<_>
|
|
11 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6537929079495370e-004</threshold>
|
|
<left_val>0.1614083945751190</left_val>
|
|
<right_val>-0.2104136943817139</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 3 1 -1.</_>
|
|
<_>
|
|
3 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0123199503868818</threshold>
|
|
<left_val>-0.5973966121673584</left_val>
|
|
<right_val>0.0406296215951443</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0138495601713657</threshold>
|
|
<left_val>-0.6877948045730591</left_val>
|
|
<right_val>0.0282975994050503</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 4 1 -1.</_>
|
|
<_>
|
|
6 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.0354750924743712e-004</threshold>
|
|
<left_val>0.1138406991958618</left_val>
|
|
<right_val>-0.2150139063596726</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 1 2 -1.</_>
|
|
<_>
|
|
14 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0391069613397121</threshold>
|
|
<left_val>-0.2260058969259262</left_val>
|
|
<right_val>0.0395268090069294</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 2 1 -1.</_>
|
|
<_>
|
|
8 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0280955005437136</threshold>
|
|
<left_val>-0.3595007956027985</left_val>
|
|
<right_val>0.0747360736131668</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 18 3 -1.</_>
|
|
<_>
|
|
9 2 6 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2125611007213593</threshold>
|
|
<left_val>-0.7109876275062561</left_val>
|
|
<right_val>0.0418695993721485</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 2 2 -1.</_>
|
|
<_>
|
|
1 2 1 1 2.</_>
|
|
<_>
|
|
2 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.9028336331248283e-003</threshold>
|
|
<left_val>0.3095433115959168</left_val>
|
|
<right_val>-0.0864241868257523</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0117957098409534</threshold>
|
|
<left_val>0.0251334607601166</left_val>
|
|
<right_val>-0.6675676107406616</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0106725404039025</threshold>
|
|
<left_val>-0.5725420713424683</left_val>
|
|
<right_val>0.0384541191160679</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 16 2 -1.</_>
|
|
<_>
|
|
10 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1926015019416809</threshold>
|
|
<left_val>0.0452950112521648</left_val>
|
|
<right_val>-0.3598395884037018</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 16 2 -1.</_>
|
|
<_>
|
|
4 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2745896875858307</threshold>
|
|
<left_val>0.0376021713018417</left_val>
|
|
<right_val>-0.6710445284843445</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 1 3 -1.</_>
|
|
<_>
|
|
21 1 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0293159298598766</threshold>
|
|
<left_val>-0.5799052119255066</left_val>
|
|
<right_val>0.0341134108603001</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 18 4 -1.</_>
|
|
<_>
|
|
0 1 9 2 2.</_>
|
|
<_>
|
|
9 3 9 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.3456305861473084</threshold>
|
|
<left_val>-0.7732198834419251</left_val>
|
|
<right_val>0.0265457499772310</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 3 5 2 -1.</_>
|
|
<_>
|
|
13 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1082191988825798</threshold>
|
|
<left_val>0.0265380498021841</left_val>
|
|
<right_val>-0.5127223730087280</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 3 5 2 -1.</_>
|
|
<_>
|
|
4 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0152253303676844</threshold>
|
|
<left_val>-0.2846137881278992</left_val>
|
|
<right_val>0.0950192511081696</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 4 4 1 -1.</_>
|
|
<_>
|
|
12 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0131285795941949</threshold>
|
|
<left_val>0.2416771054267883</left_val>
|
|
<right_val>-0.0982130095362663</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 2 5 -1.</_>
|
|
<_>
|
|
11 0 1 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0394823290407658</threshold>
|
|
<left_val>-0.0841267332434654</left_val>
|
|
<right_val>0.3172164857387543</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 20 1 -1.</_>
|
|
<_>
|
|
6 2 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2043827027082443</threshold>
|
|
<left_val>-0.0909638777375221</left_val>
|
|
<right_val>0.2731429934501648</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 3 1 -1.</_>
|
|
<_>
|
|
7 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1871099306736141e-004</threshold>
|
|
<left_val>0.1299407929182053</left_val>
|
|
<right_val>-0.1945798993110657</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 3 -1.</_>
|
|
<_>
|
|
16 1 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0935322716832161</threshold>
|
|
<left_val>0.4645681083202362</left_val>
|
|
<right_val>-0.0697620585560799</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 3 3 -1.</_>
|
|
<_>
|
|
10 1 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0235948096960783</threshold>
|
|
<left_val>-0.1631298065185547</left_val>
|
|
<right_val>0.1587969064712524</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 1 2 -1.</_>
|
|
<_>
|
|
15 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0235722996294498</threshold>
|
|
<left_val>0.0342308282852173</left_val>
|
|
<right_val>-0.3910694122314453</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 2 4 -1.</_>
|
|
<_>
|
|
10 1 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0282188504934311</threshold>
|
|
<left_val>0.4979830086231232</left_val>
|
|
<right_val>-0.0541069991886616</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 2 1 2 -1.</_>
|
|
<_>
|
|
21 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0465847887098789</threshold>
|
|
<left_val>-0.4277912080287933</left_val>
|
|
<right_val>0.0418262295424938</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 2 1 -1.</_>
|
|
<_>
|
|
1 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0116468202322721</threshold>
|
|
<left_val>0.0680371001362801</left_val>
|
|
<right_val>-0.3571461141109467</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 22 2 -1.</_>
|
|
<_>
|
|
0 3 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1952639073133469</threshold>
|
|
<left_val>0.2197133004665375</left_val>
|
|
<right_val>-0.1093451976776123</right_val></_></_></trees>
|
|
<stage_threshold>-1.5772149562835693</stage_threshold>
|
|
<parent>9</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 11 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 3 3 -1.</_>
|
|
<_>
|
|
4 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0609632283449173</threshold>
|
|
<left_val>0.2623322904109955</left_val>
|
|
<right_val>-0.3996464014053345</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 2 2 -1.</_>
|
|
<_>
|
|
12 0 1 1 2.</_>
|
|
<_>
|
|
11 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.1858150032348931e-004</threshold>
|
|
<left_val>-0.1874409019947052</left_val>
|
|
<right_val>0.1288761943578720</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 1 4 -1.</_>
|
|
<_>
|
|
9 1 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0173382796347141</threshold>
|
|
<left_val>0.1584820002317429</left_val>
|
|
<right_val>-0.4108001887798309</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 16 2 -1.</_>
|
|
<_>
|
|
8 1 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1955444961786270</threshold>
|
|
<left_val>-0.4125539958477020</left_val>
|
|
<right_val>0.1684329062700272</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 2 3 -1.</_>
|
|
<_>
|
|
7 0 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0168483406305313</threshold>
|
|
<left_val>0.1563276052474976</left_val>
|
|
<right_val>-0.4225837886333466</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 14 4 -1.</_>
|
|
<_>
|
|
11 1 7 2 2.</_>
|
|
<_>
|
|
4 3 7 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0677653029561043</threshold>
|
|
<left_val>0.0884570702910423</left_val>
|
|
<right_val>-0.4574627876281738</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 1 3 -1.</_>
|
|
<_>
|
|
3 1 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0215934794396162</threshold>
|
|
<left_val>0.4310556054115295</left_val>
|
|
<right_val>-0.1118862032890320</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 2 4 -1.</_>
|
|
<_>
|
|
11 0 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0223255306482315</threshold>
|
|
<left_val>-0.1710696965456009</left_val>
|
|
<right_val>0.1190048009157181</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 3 3 -1.</_>
|
|
<_>
|
|
9 1 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0412174686789513</threshold>
|
|
<left_val>0.1152848005294800</left_val>
|
|
<right_val>-0.4270128011703491</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 1 1 2 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.0137800311204046e-004</threshold>
|
|
<left_val>0.1759393960237503</left_val>
|
|
<right_val>-0.2061759978532791</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 1 2 -1.</_>
|
|
<_>
|
|
1 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.0204859902150929e-004</threshold>
|
|
<left_val>-0.5659689903259277</left_val>
|
|
<right_val>0.0891458168625832</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 22 2 -1.</_>
|
|
<_>
|
|
0 3 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.3092140853404999</threshold>
|
|
<left_val>0.3455514013767242</left_val>
|
|
<right_val>-0.1085027009248734</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 2 1 -1.</_>
|
|
<_>
|
|
1 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.1448230408132076e-003</threshold>
|
|
<left_val>0.1859671026468277</left_val>
|
|
<right_val>-0.2005020976066589</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 6 5 -1.</_>
|
|
<_>
|
|
18 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1202132999897003</threshold>
|
|
<left_val>-0.3477135896682739</left_val>
|
|
<right_val>0.0546781308948994</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 6 5 -1.</_>
|
|
<_>
|
|
2 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1437608003616333</threshold>
|
|
<left_val>-0.5411831736564636</left_val>
|
|
<right_val>0.0612141601741314</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 18 1 -1.</_>
|
|
<_>
|
|
4 2 9 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1203705966472626</threshold>
|
|
<left_val>-0.6147553920745850</left_val>
|
|
<right_val>0.0163895990699530</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 10 2 -1.</_>
|
|
<_>
|
|
6 2 5 1 2.</_>
|
|
<_>
|
|
11 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0426739193499088</threshold>
|
|
<left_val>0.0615998990833759</left_val>
|
|
<right_val>-0.4898751974105835</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 18 1 -1.</_>
|
|
<_>
|
|
4 2 9 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2010595053434372</threshold>
|
|
<left_val>0.0191350802779198</left_val>
|
|
<right_val>-0.4410769045352936</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 18 1 -1.</_>
|
|
<_>
|
|
9 2 9 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2088223993778229</threshold>
|
|
<left_val>0.0613639801740646</left_val>
|
|
<right_val>-0.5665506720542908</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 1 4 -1.</_>
|
|
<_>
|
|
21 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.4317639074288309e-004</threshold>
|
|
<left_val>-0.3790386915206909</left_val>
|
|
<right_val>0.0807705521583557</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 4 4 1 -1.</_>
|
|
<_>
|
|
2 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0118992803618312</threshold>
|
|
<left_val>0.0513736605644226</left_val>
|
|
<right_val>-0.5124402046203613</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 1 -1.</_>
|
|
<_>
|
|
17 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0152740897610784</threshold>
|
|
<left_val>-0.6556478142738342</left_val>
|
|
<right_val>0.0311766099184752</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 4 3 -1.</_>
|
|
<_>
|
|
1 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0204509403556585</threshold>
|
|
<left_val>-0.1100831031799316</left_val>
|
|
<right_val>0.2442660033702850</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 1 4 -1.</_>
|
|
<_>
|
|
18 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0109159899875522</threshold>
|
|
<left_val>-0.3011330962181091</left_val>
|
|
<right_val>0.0846503525972366</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 2 2 -1.</_>
|
|
<_>
|
|
10 1 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>6.5979440696537495e-003</threshold>
|
|
<left_val>-0.2353952974081039</left_val>
|
|
<right_val>0.1110377013683319</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 1 4 -1.</_>
|
|
<_>
|
|
18 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0744031295180321</threshold>
|
|
<left_val>0.0265834294259548</left_val>
|
|
<right_val>-0.5290083289146423</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 1 4 -1.</_>
|
|
<_>
|
|
3 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.6808141097426414e-003</threshold>
|
|
<left_val>-0.3191435039043427</left_val>
|
|
<right_val>0.0917709171772003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 2 -1.</_>
|
|
<_>
|
|
15 2 1 1 2.</_>
|
|
<_>
|
|
14 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.9621220892295241e-004</threshold>
|
|
<left_val>-0.2449285984039307</left_val>
|
|
<right_val>0.2619382143020630</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 18 3 -1.</_>
|
|
<_>
|
|
7 1 6 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.9801648855209351</threshold>
|
|
<left_val>0.0435502082109451</left_val>
|
|
<right_val>-0.5076766014099121</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 1 -1.</_>
|
|
<_>
|
|
17 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0316224806010723</threshold>
|
|
<left_val>-0.8424624800682068</left_val>
|
|
<right_val>3.8115619681775570e-003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 4 2 -1.</_>
|
|
<_>
|
|
8 3 2 1 2.</_>
|
|
<_>
|
|
10 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0235346294939518</threshold>
|
|
<left_val>-0.4160682857036591</left_val>
|
|
<right_val>0.0560476593673229</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 3 2 2 -1.</_>
|
|
<_>
|
|
12 3 1 1 2.</_>
|
|
<_>
|
|
11 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7265268727205694e-004</threshold>
|
|
<left_val>0.0732600167393684</left_val>
|
|
<right_val>-0.1243783980607987</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 6 2 -1.</_>
|
|
<_>
|
|
8 3 3 1 2.</_>
|
|
<_>
|
|
11 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0328024402260780</threshold>
|
|
<left_val>0.0469187088310719</left_val>
|
|
<right_val>-0.5483862757682800</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 1 -1.</_>
|
|
<_>
|
|
17 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.9037919011898339e-004</threshold>
|
|
<left_val>-0.0764242410659790</left_val>
|
|
<right_val>0.0752542465925217</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 3 1 -1.</_>
|
|
<_>
|
|
4 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0200249794870615</threshold>
|
|
<left_val>-0.6453238129615784</left_val>
|
|
<right_val>0.0336129702627659</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 3 2 2 -1.</_>
|
|
<_>
|
|
16 3 1 1 2.</_>
|
|
<_>
|
|
15 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7752740425057709e-004</threshold>
|
|
<left_val>0.0875405818223953</left_val>
|
|
<right_val>-0.0997709035873413</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 3 2 2 -1.</_>
|
|
<_>
|
|
5 3 1 1 2.</_>
|
|
<_>
|
|
6 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.7714829239994287e-004</threshold>
|
|
<left_val>-0.1190643012523651</left_val>
|
|
<right_val>0.2081373035907745</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 2 1 -1.</_>
|
|
<_>
|
|
15 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.3943509333766997e-004</threshold>
|
|
<left_val>0.1071538031101227</left_val>
|
|
<right_val>-0.3665041029453278</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 1 2 -1.</_>
|
|
<_>
|
|
7 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0310331098735332</threshold>
|
|
<left_val>-0.3991681039333344</left_val>
|
|
<right_val>0.0811882168054581</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 4 3 -1.</_>
|
|
<_>
|
|
10 2 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0172892604023218</threshold>
|
|
<left_val>0.3801375031471252</left_val>
|
|
<right_val>-0.0609772987663746</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 1 3 -1.</_>
|
|
<_>
|
|
0 1 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0150116495788097</threshold>
|
|
<left_val>-0.3346816897392273</left_val>
|
|
<right_val>0.0689330995082855</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 4 10 1 -1.</_>
|
|
<_>
|
|
12 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0645673573017120</threshold>
|
|
<left_val>0.0653947070240974</left_val>
|
|
<right_val>-0.4798898100852966</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 2 3 -1.</_>
|
|
<_>
|
|
10 0 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0126242898404598</threshold>
|
|
<left_val>-0.2073639035224915</left_val>
|
|
<right_val>0.1033783033490181</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 1 2 -1.</_>
|
|
<_>
|
|
14 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0234020091593266</threshold>
|
|
<left_val>0.0194229409098625</left_val>
|
|
<right_val>-0.2960999011993408</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 6 1 -1.</_>
|
|
<_>
|
|
10 0 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1085553020238876</threshold>
|
|
<left_val>0.0355370081961155</left_val>
|
|
<right_val>-0.5521429181098938</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 1 4 -1.</_>
|
|
<_>
|
|
21 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0453203618526459</threshold>
|
|
<left_val>0.0515648387372494</left_val>
|
|
<right_val>-0.2503679990768433</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 1 4 -1.</_>
|
|
<_>
|
|
0 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.7765920646488667e-003</threshold>
|
|
<left_val>-0.3630062043666840</left_val>
|
|
<right_val>0.0604004003107548</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 16 2 -1.</_>
|
|
<_>
|
|
4 1 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0428345203399658</threshold>
|
|
<left_val>-0.1081646010279656</left_val>
|
|
<right_val>0.0599687993526459</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 2 2 -1.</_>
|
|
<_>
|
|
0 0 1 1 2.</_>
|
|
<_>
|
|
1 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.7743198014795780e-003</threshold>
|
|
<left_val>0.2150484025478363</left_val>
|
|
<right_val>-0.0934041067957878</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0119932498782873</threshold>
|
|
<left_val>0.0175589006394148</left_val>
|
|
<right_val>-0.7442647814750671</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.5555630028247833e-003</threshold>
|
|
<left_val>-0.3836041986942291</left_val>
|
|
<right_val>0.0480565391480923</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 5 3 -1.</_>
|
|
<_>
|
|
14 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0516617707908154</threshold>
|
|
<left_val>-0.0405357703566551</left_val>
|
|
<right_val>0.2797332108020783</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 4 3 -1.</_>
|
|
<_>
|
|
3 1 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.4890910610556602e-003</threshold>
|
|
<left_val>0.1106553003191948</left_val>
|
|
<right_val>-0.1824156045913696</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
9 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1782176047563553</threshold>
|
|
<left_val>0.4667615890502930</left_val>
|
|
<right_val>-0.0457158684730530</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 16 2 -1.</_>
|
|
<_>
|
|
5 3 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0398824699223042</threshold>
|
|
<left_val>-0.3696945905685425</left_val>
|
|
<right_val>0.0662794336676598</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 2 2 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_>
|
|
<_>
|
|
19 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.6848186329007149e-003</threshold>
|
|
<left_val>-0.0908453017473221</left_val>
|
|
<right_val>0.2939020991325378</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 2 2 -1.</_>
|
|
<_>
|
|
10 3 1 1 2.</_>
|
|
<_>
|
|
11 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.8893903195858002e-003</threshold>
|
|
<left_val>-0.5941507816314697</left_val>
|
|
<right_val>0.0351584702730179</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
9 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1297979056835175</threshold>
|
|
<left_val>-0.0639680996537209</left_val>
|
|
<right_val>0.3166933059692383</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 2 1 -1.</_>
|
|
<_>
|
|
11 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0220919009298086</threshold>
|
|
<left_val>-0.7357493042945862</left_val>
|
|
<right_val>0.0347481891512871</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 6 2 -1.</_>
|
|
<_>
|
|
12 3 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0636888667941093</threshold>
|
|
<left_val>-0.0488447882235050</left_val>
|
|
<right_val>0.1882255971431732</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 3 2 2 -1.</_>
|
|
<_>
|
|
2 3 1 1 2.</_>
|
|
<_>
|
|
3 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.8462480986490846e-004</threshold>
|
|
<left_val>0.1463415026664734</left_val>
|
|
<right_val>-0.1243413984775543</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 2 2 -1.</_>
|
|
<_>
|
|
19 1 1 1 2.</_>
|
|
<_>
|
|
18 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.7389163672924042e-003</threshold>
|
|
<left_val>-0.0883570164442062</left_val>
|
|
<right_val>0.3651317059993744</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 3 1 -1.</_>
|
|
<_>
|
|
3 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.5483584553003311e-003</threshold>
|
|
<left_val>-0.3737513124942780</left_val>
|
|
<right_val>0.0492428615689278</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 2 2 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_>
|
|
<_>
|
|
19 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.8324568197131157e-003</threshold>
|
|
<left_val>0.3051201999187470</left_val>
|
|
<right_val>-0.0871342271566391</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 3 1 -1.</_>
|
|
<_>
|
|
7 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.0768225491046906e-003</threshold>
|
|
<left_val>0.0540050491690636</left_val>
|
|
<right_val>-0.3654535114765167</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 1 2 -1.</_>
|
|
<_>
|
|
14 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0414760112762451</threshold>
|
|
<left_val>-0.2639808952808380</left_val>
|
|
<right_val>0.0364313200116158</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 2 1 -1.</_>
|
|
<_>
|
|
8 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0179269202053547</threshold>
|
|
<left_val>-0.2058589011430740</left_val>
|
|
<right_val>0.0957352966070175</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 1 2 -1.</_>
|
|
<_>
|
|
15 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0134669896215200</threshold>
|
|
<left_val>0.0401146411895752</left_val>
|
|
<right_val>-0.2650730013847351</right_val></_></_>
|
|
<_>
|
|
<!-- tree 68 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 3 1 -1.</_>
|
|
<_>
|
|
6 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0105214901268482</threshold>
|
|
<left_val>0.3394441008567810</left_val>
|
|
<right_val>-0.0627214834094048</right_val></_></_>
|
|
<_>
|
|
<!-- tree 69 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 2 2 -1.</_>
|
|
<_>
|
|
16 1 1 1 2.</_>
|
|
<_>
|
|
15 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.0459967032074928e-003</threshold>
|
|
<left_val>-0.1115396991372109</left_val>
|
|
<right_val>0.3655227124691010</right_val></_></_></trees>
|
|
<stage_threshold>-1.5406730175018311</stage_threshold>
|
|
<parent>10</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 12 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 16 2 -1.</_>
|
|
<_>
|
|
6 1 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2921968996524811</threshold>
|
|
<left_val>-0.3051744103431702</left_val>
|
|
<right_val>0.3110071122646332</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 6 2 -1.</_>
|
|
<_>
|
|
10 0 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0488845296204090</threshold>
|
|
<left_val>-0.4317635893821716</left_val>
|
|
<right_val>0.0909197032451630</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 3 3 -1.</_>
|
|
<_>
|
|
4 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0861048474907875</threshold>
|
|
<left_val>0.2350410073995590</left_val>
|
|
<right_val>-0.2458875030279160</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 9 1 -1.</_>
|
|
<_>
|
|
14 0 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0378247499465942</threshold>
|
|
<left_val>0.1186527982354164</left_val>
|
|
<right_val>-0.1602728068828583</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 4 4 1 -1.</_>
|
|
<_>
|
|
10 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.1638111472129822e-003</threshold>
|
|
<left_val>-0.3087972998619080</left_val>
|
|
<right_val>0.1692786067724228</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 1 5 4 -1.</_>
|
|
<_>
|
|
13 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1060808971524239</threshold>
|
|
<left_val>-0.3249335885047913</left_val>
|
|
<right_val>0.2009779959917069</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 9 1 -1.</_>
|
|
<_>
|
|
5 0 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0177585501223803</threshold>
|
|
<left_val>0.1128119006752968</left_val>
|
|
<right_val>-0.3532074093818665</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 5 4 -1.</_>
|
|
<_>
|
|
13 1 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0493416897952557</threshold>
|
|
<left_val>0.1454734057188034</left_val>
|
|
<right_val>-0.2653774917125702</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 10 2 -1.</_>
|
|
<_>
|
|
6 2 5 1 2.</_>
|
|
<_>
|
|
11 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0259109698235989</threshold>
|
|
<left_val>0.1229083985090256</left_val>
|
|
<right_val>-0.4127517044544220</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 3 3 2 -1.</_>
|
|
<_>
|
|
19 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.6900721974670887e-003</threshold>
|
|
<left_val>-0.4184210896492004</left_val>
|
|
<right_val>0.0988551601767540</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 5 3 -1.</_>
|
|
<_>
|
|
2 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1002437993884087</threshold>
|
|
<left_val>0.3868139982223511</left_val>
|
|
<right_val>-0.0955260768532753</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 1 1 2 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.0592489454429597e-004</threshold>
|
|
<left_val>0.1086150035262108</left_val>
|
|
<right_val>-0.1146064028143883</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 1 2 -1.</_>
|
|
<_>
|
|
1 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.4438640684820712e-004</threshold>
|
|
<left_val>0.1391827017068863</left_val>
|
|
<right_val>-0.2279980033636093</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 2 2 -1.</_>
|
|
<_>
|
|
18 1 1 1 2.</_>
|
|
<_>
|
|
17 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2062960488256067e-004</threshold>
|
|
<left_val>0.2056594938039780</left_val>
|
|
<right_val>-0.2767710089683533</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 5 -1.</_>
|
|
<_>
|
|
11 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0959741026163101</threshold>
|
|
<left_val>0.3078581094741821</left_val>
|
|
<right_val>-0.1182383000850678</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 6 3 -1.</_>
|
|
<_>
|
|
9 2 3 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1543993055820465</threshold>
|
|
<left_val>0.4471242129802704</left_val>
|
|
<right_val>-0.0175462197512388</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 4 2 -1.</_>
|
|
<_>
|
|
10 3 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0623852089047432</threshold>
|
|
<left_val>-0.1276288032531738</left_val>
|
|
<right_val>0.2665241956710815</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 1 4 -1.</_>
|
|
<_>
|
|
21 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0216632205992937</threshold>
|
|
<left_val>-0.5511227250099182</left_val>
|
|
<right_val>0.0785660073161125</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 20 1 -1.</_>
|
|
<_>
|
|
6 2 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2421177029609680</threshold>
|
|
<left_val>-0.0816057026386261</left_val>
|
|
<right_val>0.4142647981643677</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 2 1 -1.</_>
|
|
<_>
|
|
20 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0434077084064484</threshold>
|
|
<left_val>0.0290277097374201</left_val>
|
|
<right_val>-0.6575114727020264</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 2 2 -1.</_>
|
|
<_>
|
|
3 1 1 1 2.</_>
|
|
<_>
|
|
4 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.5835740962065756e-004</threshold>
|
|
<left_val>0.1479489952325821</left_val>
|
|
<right_val>-0.1816845983266830</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 4 2 -1.</_>
|
|
<_>
|
|
18 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0205316301435232</threshold>
|
|
<left_val>-0.3038592934608460</left_val>
|
|
<right_val>0.0581487491726875</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 3 2 -1.</_>
|
|
<_>
|
|
6 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0351201295852661</threshold>
|
|
<left_val>-0.7728464007377625</left_val>
|
|
<right_val>0.0335446707904339</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 21 3 -1.</_>
|
|
<_>
|
|
8 2 7 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.9051967263221741</threshold>
|
|
<left_val>0.0589515194296837</left_val>
|
|
<right_val>-0.4095562100410461</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 3 2 -1.</_>
|
|
<_>
|
|
7 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0291394107043743</threshold>
|
|
<left_val>-0.4947493970394135</left_val>
|
|
<right_val>0.0490220896899700</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 2 3 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.9205689728260040e-003</threshold>
|
|
<left_val>0.1703335940837860</left_val>
|
|
<right_val>-0.1276351064443588</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 2 2 2 -1.</_>
|
|
<_>
|
|
10 2 1 1 2.</_>
|
|
<_>
|
|
11 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.8206740543246269e-003</threshold>
|
|
<left_val>-0.4427204132080078</left_val>
|
|
<right_val>0.0647476464509964</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 3 3 2 -1.</_>
|
|
<_>
|
|
19 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0119166104122996</threshold>
|
|
<left_val>-0.4208048880100250</left_val>
|
|
<right_val>0.0145897697657347</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 3 2 -1.</_>
|
|
<_>
|
|
0 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0149108795449138</threshold>
|
|
<left_val>-0.2619223892688751</left_val>
|
|
<right_val>0.0987395420670509</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 2 3 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0396954789757729</threshold>
|
|
<left_val>-0.5716304779052734</left_val>
|
|
<right_val>0.0150962797924876</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 3 1 -1.</_>
|
|
<_>
|
|
7 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1801660477649420e-004</threshold>
|
|
<left_val>0.1283320039510727</left_val>
|
|
<right_val>-0.2162196040153503</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0458851009607315</threshold>
|
|
<left_val>-0.5830789208412170</left_val>
|
|
<right_val>0.0230850204825401</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 1 2 -1.</_>
|
|
<_>
|
|
8 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0376097708940506</threshold>
|
|
<left_val>-0.4769774973392487</left_val>
|
|
<right_val>0.0497832708060741</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 1 2 2 -1.</_>
|
|
<_>
|
|
20 1 1 1 2.</_>
|
|
<_>
|
|
19 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.9078450798988342e-003</threshold>
|
|
<left_val>0.2802506983280182</left_val>
|
|
<right_val>-0.0805409103631973</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 4 2 -1.</_>
|
|
<_>
|
|
2 2 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0398138388991356</threshold>
|
|
<left_val>-0.0639362186193466</left_val>
|
|
<right_val>0.4094027876853943</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 1 2 2 -1.</_>
|
|
<_>
|
|
20 1 1 1 2.</_>
|
|
<_>
|
|
19 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.4679851271212101e-003</threshold>
|
|
<left_val>-0.0683591663837433</left_val>
|
|
<right_val>0.1852204948663712</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 2 2 -1.</_>
|
|
<_>
|
|
1 1 1 1 2.</_>
|
|
<_>
|
|
2 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.4347038753330708e-003</threshold>
|
|
<left_val>0.2987340092658997</left_val>
|
|
<right_val>-0.0968659073114395</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 3 2 2 -1.</_>
|
|
<_>
|
|
12 3 1 1 2.</_>
|
|
<_>
|
|
11 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6862850063480437e-004</threshold>
|
|
<left_val>0.0885278210043907</left_val>
|
|
<right_val>-0.1421532034873962</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 3 1 -1.</_>
|
|
<_>
|
|
5 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0165531896054745</threshold>
|
|
<left_val>-0.4923925995826721</left_val>
|
|
<right_val>0.0490056388080120</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 3 5 2 -1.</_>
|
|
<_>
|
|
13 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0924725681543350</threshold>
|
|
<left_val>0.0338660590350628</left_val>
|
|
<right_val>-0.4127385914325714</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 3 5 2 -1.</_>
|
|
<_>
|
|
4 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0257745198905468</threshold>
|
|
<left_val>-0.2287130951881409</left_val>
|
|
<right_val>0.1235911995172501</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 16 4 -1.</_>
|
|
<_>
|
|
11 0 8 2 2.</_>
|
|
<_>
|
|
3 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2750909924507141</threshold>
|
|
<left_val>-0.6749944090843201</left_val>
|
|
<right_val>0.0343307591974735</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 2 4 -1.</_>
|
|
<_>
|
|
0 2 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0719025880098343</threshold>
|
|
<left_val>0.0419560708105564</left_val>
|
|
<right_val>-0.4763529002666473</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 4 2 -1.</_>
|
|
<_>
|
|
18 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0311908591538668</threshold>
|
|
<left_val>0.0272666793316603</left_val>
|
|
<right_val>-0.3000186085700989</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 4 2 -1.</_>
|
|
<_>
|
|
2 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0178631804883480</threshold>
|
|
<left_val>-0.3733784854412079</left_val>
|
|
<right_val>0.0616636909544468</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 16 2 -1.</_>
|
|
<_>
|
|
10 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1511456966400147</threshold>
|
|
<left_val>0.0517917387187481</left_val>
|
|
<right_val>-0.2188622951507568</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 16 2 -1.</_>
|
|
<_>
|
|
4 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2179343998432159</threshold>
|
|
<left_val>0.0610164590179920</left_val>
|
|
<right_val>-0.4177503883838654</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 3 1 -1.</_>
|
|
<_>
|
|
16 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0112180197611451</threshold>
|
|
<left_val>0.0348128601908684</left_val>
|
|
<right_val>-0.5263618230819702</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
11 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1888345927000046</threshold>
|
|
<left_val>0.5200440883636475</left_val>
|
|
<right_val>-0.0430313684046268</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 3 1 -1.</_>
|
|
<_>
|
|
16 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0141079900786281</threshold>
|
|
<left_val>-0.6106898188591003</left_val>
|
|
<right_val>0.0400286093354225</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 8 2 -1.</_>
|
|
<_>
|
|
7 0 4 1 2.</_>
|
|
<_>
|
|
11 1 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0180448405444622</threshold>
|
|
<left_val>-0.2631984055042267</left_val>
|
|
<right_val>0.0730124115943909</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 2 2 -1.</_>
|
|
<_>
|
|
19 1 1 1 2.</_>
|
|
<_>
|
|
18 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.5544890239834785e-003</threshold>
|
|
<left_val>-0.0854290127754211</left_val>
|
|
<right_val>0.2241147011518478</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 3 1 -1.</_>
|
|
<_>
|
|
4 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0123116597533226</threshold>
|
|
<left_val>-0.4429729878902435</left_val>
|
|
<right_val>0.0466542616486549</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 2 2 -1.</_>
|
|
<_>
|
|
19 1 1 1 2.</_>
|
|
<_>
|
|
18 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.6358742080628872e-003</threshold>
|
|
<left_val>0.1996064037084580</left_val>
|
|
<right_val>-0.0522281304001808</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 3 1 -1.</_>
|
|
<_>
|
|
5 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0192709192633629</threshold>
|
|
<left_val>-0.7685980796813965</left_val>
|
|
<right_val>0.0243509095162153</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 4 4 1 -1.</_>
|
|
<_>
|
|
10 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.6641881391406059e-003</threshold>
|
|
<left_val>-0.1346967071294785</left_val>
|
|
<right_val>0.1324453949928284</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 2 2 -1.</_>
|
|
<_>
|
|
2 1 1 1 2.</_>
|
|
<_>
|
|
3 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0120201902464032</threshold>
|
|
<left_val>0.3553862869739533</left_val>
|
|
<right_val>-0.0525580197572708</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 3 2 2 -1.</_>
|
|
<_>
|
|
12 3 1 1 2.</_>
|
|
<_>
|
|
11 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0220797900110483</threshold>
|
|
<left_val>-0.6754226088523865</left_val>
|
|
<right_val>0.0124195404350758</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 3 2 2 -1.</_>
|
|
<_>
|
|
9 3 1 1 2.</_>
|
|
<_>
|
|
10 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.0078861163929105e-004</threshold>
|
|
<left_val>0.1227649971842766</left_val>
|
|
<right_val>-0.1749749928712845</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 1 4 4 -1.</_>
|
|
<_>
|
|
12 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0373087115585804</threshold>
|
|
<left_val>0.1854808926582336</left_val>
|
|
<right_val>-0.0979751124978065</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 3 3 -1.</_>
|
|
<_>
|
|
10 1 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0459991209208965</threshold>
|
|
<left_val>0.1143648996949196</left_val>
|
|
<right_val>-0.2461473047733307</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 1 4 4 -1.</_>
|
|
<_>
|
|
12 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0822245106101036</threshold>
|
|
<left_val>-0.0241080205887556</left_val>
|
|
<right_val>0.2690033018589020</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 1 4 4 -1.</_>
|
|
<_>
|
|
8 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0818987190723419</threshold>
|
|
<left_val>-0.0396540313959122</left_val>
|
|
<right_val>0.5047857761383057</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 20 2 -1.</_>
|
|
<_>
|
|
6 1 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.4614373147487640</threshold>
|
|
<left_val>-0.0442391782999039</left_val>
|
|
<right_val>0.4122915863990784</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 2 2 -1.</_>
|
|
<_>
|
|
9 0 1 1 2.</_>
|
|
<_>
|
|
10 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5755251408554614e-004</threshold>
|
|
<left_val>-0.1778572052717209</left_val>
|
|
<right_val>0.1205023005604744</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 6 2 -1.</_>
|
|
<_>
|
|
12 0 3 1 2.</_>
|
|
<_>
|
|
9 1 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0156651996076107</threshold>
|
|
<left_val>-0.0485711507499218</left_val>
|
|
<right_val>0.0815467536449432</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 6 2 -1.</_>
|
|
<_>
|
|
7 0 3 1 2.</_>
|
|
<_>
|
|
10 1 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0498800091445446</threshold>
|
|
<left_val>0.0421518981456757</left_val>
|
|
<right_val>-0.5303056836128235</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 2 2 2 -1.</_>
|
|
<_>
|
|
20 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7810079045593739e-003</threshold>
|
|
<left_val>0.1198678985238075</left_val>
|
|
<right_val>-0.1906044930219650</right_val></_></_>
|
|
<_>
|
|
<!-- tree 68 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 3 1 -1.</_>
|
|
<_>
|
|
4 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0176007691770792</threshold>
|
|
<left_val>0.1897035986185074</left_val>
|
|
<right_val>-0.0889791026711464</right_val></_></_>
|
|
<_>
|
|
<!-- tree 69 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 6 1 -1.</_>
|
|
<_>
|
|
10 0 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.0103738903999329e-003</threshold>
|
|
<left_val>-0.3168081939220429</left_val>
|
|
<right_val>0.0617063082754612</right_val></_></_>
|
|
<_>
|
|
<!-- tree 70 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 1 2 -1.</_>
|
|
<_>
|
|
3 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.5831652134656906e-003</threshold>
|
|
<left_val>-0.2072229981422424</left_val>
|
|
<right_val>0.0893940627574921</right_val></_></_>
|
|
<_>
|
|
<!-- tree 71 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 6 4 -1.</_>
|
|
<_>
|
|
19 1 3 2 2.</_>
|
|
<_>
|
|
16 3 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0101343700662255</threshold>
|
|
<left_val>-0.0700401812791824</left_val>
|
|
<right_val>0.0486948713660240</right_val></_></_>
|
|
<_>
|
|
<!-- tree 72 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 6 4 -1.</_>
|
|
<_>
|
|
0 1 3 2 2.</_>
|
|
<_>
|
|
3 3 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1701169013977051</threshold>
|
|
<left_val>0.0258664395660162</left_val>
|
|
<right_val>-0.7274320125579834</right_val></_></_>
|
|
<_>
|
|
<!-- tree 73 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 2 1 -1.</_>
|
|
<_>
|
|
20 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0128320399671793</threshold>
|
|
<left_val>-0.0323757715523243</left_val>
|
|
<right_val>0.2820742130279541</right_val></_></_>
|
|
<_>
|
|
<!-- tree 74 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 2 1 -1.</_>
|
|
<_>
|
|
1 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1063549502287060e-004</threshold>
|
|
<left_val>0.0980736389756203</left_val>
|
|
<right_val>-0.1779716014862061</right_val></_></_>
|
|
<_>
|
|
<!-- tree 75 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 1 4 -1.</_>
|
|
<_>
|
|
21 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0157455801963806</threshold>
|
|
<left_val>-0.3981826007366180</left_val>
|
|
<right_val>0.0212849508970976</right_val></_></_>
|
|
<_>
|
|
<!-- tree 76 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 1 4 -1.</_>
|
|
<_>
|
|
0 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0530990995466709</threshold>
|
|
<left_val>0.0473971702158451</left_val>
|
|
<right_val>-0.3579272925853729</right_val></_></_></trees>
|
|
<stage_threshold>-1.5132089853286743</stage_threshold>
|
|
<parent>11</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 13 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 1 3 -1.</_>
|
|
<_>
|
|
1 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0126078296452761</threshold>
|
|
<left_val>0.3289293050765991</left_val>
|
|
<right_val>-0.2871732115745544</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
10 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0697642564773560</threshold>
|
|
<left_val>-0.2145617008209229</left_val>
|
|
<right_val>0.2685098946094513</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 3 3 -1.</_>
|
|
<_>
|
|
4 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0417437888681889</threshold>
|
|
<left_val>0.1513637006282806</left_val>
|
|
<right_val>-0.3876473903656006</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 8 2 -1.</_>
|
|
<_>
|
|
9 0 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1030343025922775</threshold>
|
|
<left_val>-0.2848167121410370</left_val>
|
|
<right_val>0.1298658996820450</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 16 1 -1.</_>
|
|
<_>
|
|
11 0 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0966407731175423</threshold>
|
|
<left_val>-0.5245664715766907</left_val>
|
|
<right_val>0.1095390990376473</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.0958474427461624e-003</threshold>
|
|
<left_val>0.0513810887932777</left_val>
|
|
<right_val>-0.2667458057403565</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 2 2 -1.</_>
|
|
<_>
|
|
6 1 1 1 2.</_>
|
|
<_>
|
|
7 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2447129595093429e-004</threshold>
|
|
<left_val>0.2091910988092423</left_val>
|
|
<right_val>-0.2435808926820755</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 1 5 4 -1.</_>
|
|
<_>
|
|
13 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1241464987397194</threshold>
|
|
<left_val>-0.3006137907505035</left_val>
|
|
<right_val>0.1572912931442261</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 4 3 -1.</_>
|
|
<_>
|
|
2 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0473679304122925</threshold>
|
|
<left_val>-0.0841763168573380</left_val>
|
|
<right_val>0.4142656028270721</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 4 2 -1.</_>
|
|
<_>
|
|
20 0 2 1 2.</_>
|
|
<_>
|
|
18 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0196097102016211</threshold>
|
|
<left_val>0.3417541086673737</left_val>
|
|
<right_val>-0.1607497930526733</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 10 2 -1.</_>
|
|
<_>
|
|
6 2 5 1 2.</_>
|
|
<_>
|
|
11 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0348290093243122</threshold>
|
|
<left_val>0.0755929425358772</left_val>
|
|
<right_val>-0.4508461058139801</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 8 3 -1.</_>
|
|
<_>
|
|
8 2 4 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3101227879524231</threshold>
|
|
<left_val>-0.0391340292990208</left_val>
|
|
<right_val>0.1443621963262558</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 8 3 -1.</_>
|
|
<_>
|
|
10 2 4 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2924937009811401</threshold>
|
|
<left_val>-0.0642258077859879</left_val>
|
|
<right_val>0.4353322982788086</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 1 3 -1.</_>
|
|
<_>
|
|
18 1 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0231145899742842</threshold>
|
|
<left_val>0.3070923089981079</left_val>
|
|
<right_val>-0.0890118405222893</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 3 1 -1.</_>
|
|
<_>
|
|
10 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.7578460867516696e-004</threshold>
|
|
<left_val>-0.3070184886455536</left_val>
|
|
<right_val>0.0938344672322273</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 1 4 -1.</_>
|
|
<_>
|
|
21 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0455872192978859</threshold>
|
|
<left_val>0.0382352918386459</left_val>
|
|
<right_val>-0.3347797989845276</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 1 4 -1.</_>
|
|
<_>
|
|
0 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0240571107715368</threshold>
|
|
<left_val>-0.4457365870475769</left_val>
|
|
<right_val>0.0670702308416367</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 1 3 -1.</_>
|
|
<_>
|
|
18 1 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0136166596785188</threshold>
|
|
<left_val>-0.0614804998040199</left_val>
|
|
<right_val>0.4214267134666443</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 1 3 -1.</_>
|
|
<_>
|
|
3 1 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0229929592460394</threshold>
|
|
<left_val>0.3661642074584961</left_val>
|
|
<right_val>-0.0872418433427811</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 6 5 -1.</_>
|
|
<_>
|
|
18 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1258576959371567</threshold>
|
|
<left_val>0.0371632091701031</left_val>
|
|
<right_val>-0.3560774028301239</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 8 4 -1.</_>
|
|
<_>
|
|
0 1 4 2 2.</_>
|
|
<_>
|
|
4 3 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0815337896347046</threshold>
|
|
<left_val>-0.4698711931705475</left_val>
|
|
<right_val>0.0610106214880943</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 3 2 2 -1.</_>
|
|
<_>
|
|
19 3 1 1 2.</_>
|
|
<_>
|
|
18 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.4753381148912013e-004</threshold>
|
|
<left_val>0.1936306953430176</left_val>
|
|
<right_val>-0.1816868036985397</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 2 2 1 -1.</_>
|
|
<_>
|
|
2 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.6028539286926389e-004</threshold>
|
|
<left_val>0.0846851170063019</left_val>
|
|
<right_val>-0.3284845948219299</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 4 2 1 -1.</_>
|
|
<_>
|
|
19 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2039060422684997e-004</threshold>
|
|
<left_val>0.1229088008403778</left_val>
|
|
<right_val>-0.1549490988254547</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 18 1 -1.</_>
|
|
<_>
|
|
9 2 9 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1960303038358688</threshold>
|
|
<left_val>0.0581260509788990</left_val>
|
|
<right_val>-0.4562155008316040</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 16 4 -1.</_>
|
|
<_>
|
|
11 0 8 2 2.</_>
|
|
<_>
|
|
3 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1407869011163712</threshold>
|
|
<left_val>0.0446753203868866</left_val>
|
|
<right_val>-0.5619760155677795</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 3 1 -1.</_>
|
|
<_>
|
|
6 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2961759532336146e-004</threshold>
|
|
<left_val>0.1191250979900360</left_val>
|
|
<right_val>-0.2160618007183075</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 3 2 -1.</_>
|
|
<_>
|
|
15 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0195333305746317</threshold>
|
|
<left_val>-0.3905149102210999</left_val>
|
|
<right_val>0.0701041594147682</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 1 2 2 -1.</_>
|
|
<_>
|
|
5 1 1 1 2.</_>
|
|
<_>
|
|
6 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0138731095939875</threshold>
|
|
<left_val>-0.0724452435970306</left_val>
|
|
<right_val>0.3774791061878204</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 3 2 -1.</_>
|
|
<_>
|
|
15 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.2634480663109571e-004</threshold>
|
|
<left_val>0.0957862436771393</left_val>
|
|
<right_val>-0.1260748058557510</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 3 2 -1.</_>
|
|
<_>
|
|
6 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0241786092519760</threshold>
|
|
<left_val>-0.5329800844192505</left_val>
|
|
<right_val>0.0503096207976341</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 3 1 -1.</_>
|
|
<_>
|
|
16 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0145593099296093</threshold>
|
|
<left_val>0.3904046118259430</left_val>
|
|
<right_val>-0.1187724992632866</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 3 3 1 -1.</_>
|
|
<_>
|
|
6 3 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2580049699172378e-004</threshold>
|
|
<left_val>0.1951259970664978</left_val>
|
|
<right_val>-0.1484954059123993</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 21 3 -1.</_>
|
|
<_>
|
|
8 2 7 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2149316072463989</threshold>
|
|
<left_val>-0.6001014709472656</left_val>
|
|
<right_val>0.0291111394762993</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 3 1 -1.</_>
|
|
<_>
|
|
2 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0128397000953555</threshold>
|
|
<left_val>0.3157683014869690</left_val>
|
|
<right_val>-0.0720015019178391</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 1 1 3 -1.</_>
|
|
<_>
|
|
19 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0198789108544588</threshold>
|
|
<left_val>0.3225157856941223</left_val>
|
|
<right_val>-0.1353725939989090</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 1 3 -1.</_>
|
|
<_>
|
|
2 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0100354896858335</threshold>
|
|
<left_val>-0.0568225607275963</left_val>
|
|
<right_val>0.4656737148761749</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 1 8 2 -1.</_>
|
|
<_>
|
|
11 1 4 1 2.</_>
|
|
<_>
|
|
7 2 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0376236811280251</threshold>
|
|
<left_val>-0.4267737865447998</left_val>
|
|
<right_val>0.0648194700479507</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 2 2 -1.</_>
|
|
<_>
|
|
9 1 1 1 2.</_>
|
|
<_>
|
|
10 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.1324769729981199e-004</threshold>
|
|
<left_val>-0.1595813930034638</left_val>
|
|
<right_val>0.1477826982736588</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 2 3 3 -1.</_>
|
|
<_>
|
|
12 2 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0379783287644386</threshold>
|
|
<left_val>-0.0659075826406479</left_val>
|
|
<right_val>0.4012987911701202</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 1 3 4 -1.</_>
|
|
<_>
|
|
9 1 1 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0394397787749767</threshold>
|
|
<left_val>-0.0845254808664322</left_val>
|
|
<right_val>0.3566597998142242</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.9516127482056618e-003</threshold>
|
|
<left_val>-0.4334160983562470</left_val>
|
|
<right_val>0.0619834288954735</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.3888713270425797e-003</threshold>
|
|
<left_val>0.0468572117388248</left_val>
|
|
<right_val>-0.4738920032978058</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 3 1 -1.</_>
|
|
<_>
|
|
17 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.4398089200258255e-003</threshold>
|
|
<left_val>0.0421781986951828</left_val>
|
|
<right_val>-0.5143380761146545</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0107923196628690</threshold>
|
|
<left_val>-0.5802994966506958</left_val>
|
|
<right_val>0.0322903692722321</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 6 2 -1.</_>
|
|
<_>
|
|
11 3 3 1 2.</_>
|
|
<_>
|
|
8 4 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0174952093511820</threshold>
|
|
<left_val>-0.3053542971611023</left_val>
|
|
<right_val>0.0629183128476143</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 3 2 -1.</_>
|
|
<_>
|
|
4 2 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0205707103013992</threshold>
|
|
<left_val>0.1825321018695831</left_val>
|
|
<right_val>-0.1210422962903976</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 3 2 2 -1.</_>
|
|
<_>
|
|
14 3 1 1 2.</_>
|
|
<_>
|
|
13 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.1084279685746878e-004</threshold>
|
|
<left_val>0.1000263988971710</left_val>
|
|
<right_val>-0.1450241953134537</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 3 4 2 -1.</_>
|
|
<_>
|
|
9 3 2 1 2.</_>
|
|
<_>
|
|
11 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0111437896266580</threshold>
|
|
<left_val>-0.3472850024700165</left_val>
|
|
<right_val>0.0650748834013939</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 2 2 -1.</_>
|
|
<_>
|
|
16 2 1 1 2.</_>
|
|
<_>
|
|
15 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.1553200036287308e-003</threshold>
|
|
<left_val>0.3398604989051819</left_val>
|
|
<right_val>-0.1354638040065765</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 4 2 1 -1.</_>
|
|
<_>
|
|
2 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1860719425603747e-004</threshold>
|
|
<left_val>0.1421895027160645</left_val>
|
|
<right_val>-0.1600103974342346</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 3 -1.</_>
|
|
<_>
|
|
9 1 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0871755927801132</threshold>
|
|
<left_val>0.3080326914787293</left_val>
|
|
<right_val>-0.0751926526427269</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 8 1 -1.</_>
|
|
<_>
|
|
8 2 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0780207216739655</threshold>
|
|
<left_val>-0.0983691290020943</left_val>
|
|
<right_val>0.2524915933609009</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 3 4 2 -1.</_>
|
|
<_>
|
|
18 4 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8408560319803655e-004</threshold>
|
|
<left_val>-0.3871381878852844</left_val>
|
|
<right_val>0.0476101711392403</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 4 4 1 -1.</_>
|
|
<_>
|
|
8 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0120724802836776</threshold>
|
|
<left_val>0.2123920023441315</left_val>
|
|
<right_val>-0.1005887016654015</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 3 4 2 -1.</_>
|
|
<_>
|
|
18 4 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0993544980883598</threshold>
|
|
<left_val>0.0249169804155827</left_val>
|
|
<right_val>-0.5672984719276428</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 4 2 -1.</_>
|
|
<_>
|
|
0 4 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.9157710485160351e-003</threshold>
|
|
<left_val>-0.5084031224250794</left_val>
|
|
<right_val>0.0410367809236050</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 3 1 -1.</_>
|
|
<_>
|
|
16 1 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.2407809845171869e-004</threshold>
|
|
<left_val>0.0786713063716888</left_val>
|
|
<right_val>-0.1326536983251572</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 5 4 -1.</_>
|
|
<_>
|
|
4 1 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0522460602223873</threshold>
|
|
<left_val>0.1149192005395889</left_val>
|
|
<right_val>-0.1770702004432678</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 2 2 -1.</_>
|
|
<_>
|
|
16 2 1 1 2.</_>
|
|
<_>
|
|
15 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.8520159937907010e-004</threshold>
|
|
<left_val>0.0747666209936142</left_val>
|
|
<right_val>-0.1286102980375290</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 2 2 -1.</_>
|
|
<_>
|
|
5 2 1 1 2.</_>
|
|
<_>
|
|
6 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0124963195994496</threshold>
|
|
<left_val>-0.0372684299945831</left_val>
|
|
<right_val>0.5833895206451416</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 3 1 -1.</_>
|
|
<_>
|
|
14 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0207027494907379</threshold>
|
|
<left_val>-0.4583578109741211</left_val>
|
|
<right_val>0.0298828296363354</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 3 1 -1.</_>
|
|
<_>
|
|
7 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.0285720054525882e-004</threshold>
|
|
<left_val>0.1169814020395279</left_val>
|
|
<right_val>-0.1779796034097672</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 3 2 -1.</_>
|
|
<_>
|
|
16 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0292956698685884</threshold>
|
|
<left_val>-0.4759201109409332</left_val>
|
|
<right_val>0.0553959012031555</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 3 2 -1.</_>
|
|
<_>
|
|
5 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.6850448921322823e-003</threshold>
|
|
<left_val>0.0954134166240692</left_val>
|
|
<right_val>-0.2369711995124817</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 5 4 -1.</_>
|
|
<_>
|
|
15 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3639847934246063</threshold>
|
|
<left_val>0.0247668605297804</left_val>
|
|
<right_val>-0.7378187179565430</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 3 3 -1.</_>
|
|
<_>
|
|
4 2 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0348225310444832</threshold>
|
|
<left_val>-0.0371499098837376</left_val>
|
|
<right_val>0.5801017284393311</right_val></_></_></trees>
|
|
<stage_threshold>-1.5654580593109131</stage_threshold>
|
|
<parent>12</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 14 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 2 2 -1.</_>
|
|
<_>
|
|
0 1 1 1 2.</_>
|
|
<_>
|
|
1 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.6602258011698723e-003</threshold>
|
|
<left_val>0.3104394078254700</left_val>
|
|
<right_val>-0.1914138048887253</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 6 2 -1.</_>
|
|
<_>
|
|
10 0 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0880320072174072</threshold>
|
|
<left_val>-0.2895796000957489</left_val>
|
|
<right_val>0.1216154992580414</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 3 1 -1.</_>
|
|
<_>
|
|
4 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.2375640049576759e-003</threshold>
|
|
<left_val>0.1945987045764923</left_val>
|
|
<right_val>-0.2775964140892029</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 14 2 -1.</_>
|
|
<_>
|
|
6 1 7 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.4101809859275818</threshold>
|
|
<left_val>0.0545456595718861</left_val>
|
|
<right_val>-0.6932289004325867</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 4 1 -1.</_>
|
|
<_>
|
|
2 1 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-7.9229446128010750e-003</threshold>
|
|
<left_val>0.1306308060884476</left_val>
|
|
<right_val>-0.3845525979995728</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 4 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0787577778100967</threshold>
|
|
<left_val>-0.1861117035150528</left_val>
|
|
<right_val>0.1028727963566780</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 12 2 -1.</_>
|
|
<_>
|
|
10 1 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1022275015711784</threshold>
|
|
<left_val>-0.2970561087131500</left_val>
|
|
<right_val>0.1501674950122833</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 22 2 -1.</_>
|
|
<_>
|
|
11 0 11 1 2.</_>
|
|
<_>
|
|
0 1 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0644519180059433</threshold>
|
|
<left_val>-0.4134370088577271</left_val>
|
|
<right_val>0.1080941036343575</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 2 3 -1.</_>
|
|
<_>
|
|
2 1 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0368057303130627</threshold>
|
|
<left_val>0.3684262037277222</left_val>
|
|
<right_val>-0.1141026020050049</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 1 3 -1.</_>
|
|
<_>
|
|
18 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0293698497116566</threshold>
|
|
<left_val>0.3276480138301849</left_val>
|
|
<right_val>-0.0802641063928604</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 3 1 -1.</_>
|
|
<_>
|
|
3 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.7123891785740852e-003</threshold>
|
|
<left_val>0.0882864221930504</left_val>
|
|
<right_val>-0.4445902109146118</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 6 5 -1.</_>
|
|
<_>
|
|
18 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1538141071796417</threshold>
|
|
<left_val>-0.4562157094478607</left_val>
|
|
<right_val>0.0180936008691788</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 8 2 -1.</_>
|
|
<_>
|
|
7 3 4 1 2.</_>
|
|
<_>
|
|
11 4 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0253893695771694</threshold>
|
|
<left_val>-0.4690324962139130</left_val>
|
|
<right_val>0.0615506581962109</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0298910997807980</threshold>
|
|
<left_val>-0.2820520997047424</left_val>
|
|
<right_val>0.0278933197259903</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 1 2 -1.</_>
|
|
<_>
|
|
8 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.3889240401331335e-004</threshold>
|
|
<left_val>0.0866776108741760</left_val>
|
|
<right_val>-0.3572528958320618</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 6 5 -1.</_>
|
|
<_>
|
|
18 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0967053025960922</threshold>
|
|
<left_val>0.0334066599607468</left_val>
|
|
<right_val>-0.2078382968902588</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 1 2 2 -1.</_>
|
|
<_>
|
|
5 1 1 1 2.</_>
|
|
<_>
|
|
6 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.1295214369893074e-003</threshold>
|
|
<left_val>-0.0991728901863098</left_val>
|
|
<right_val>0.3085930943489075</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 6 5 -1.</_>
|
|
<_>
|
|
18 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2934893071651459</threshold>
|
|
<left_val>8.1442613154649734e-003</left_val>
|
|
<right_val>-0.5095192193984985</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 10 4 -1.</_>
|
|
<_>
|
|
6 0 5 2 2.</_>
|
|
<_>
|
|
11 2 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0832473635673523</threshold>
|
|
<left_val>-0.4849885106086731</left_val>
|
|
<right_val>0.0608736611902714</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 6 5 -1.</_>
|
|
<_>
|
|
18 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0835273936390877</threshold>
|
|
<left_val>-0.1033390015363693</left_val>
|
|
<right_val>0.0158715695142746</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 6 5 -1.</_>
|
|
<_>
|
|
2 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1202830001711845</threshold>
|
|
<left_val>-0.4354028999805450</left_val>
|
|
<right_val>0.0633132308721542</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 16 2 -1.</_>
|
|
<_>
|
|
9 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3353897035121918</threshold>
|
|
<left_val>0.0139546301215887</left_val>
|
|
<right_val>-0.4423910081386566</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 10 3 -1.</_>
|
|
<_>
|
|
6 2 5 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0164324194192886</threshold>
|
|
<left_val>-0.4260169863700867</left_val>
|
|
<right_val>0.0586070418357849</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 3 2 2 -1.</_>
|
|
<_>
|
|
16 3 1 1 2.</_>
|
|
<_>
|
|
15 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.9124349637422711e-004</threshold>
|
|
<left_val>0.0605542287230492</left_val>
|
|
<right_val>-0.0775830224156380</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 3 2 2 -1.</_>
|
|
<_>
|
|
5 3 1 1 2.</_>
|
|
<_>
|
|
6 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.3965220316313207e-004</threshold>
|
|
<left_val>-0.1283147037029266</left_val>
|
|
<right_val>0.2045322954654694</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 8 4 -1.</_>
|
|
<_>
|
|
18 1 4 2 2.</_>
|
|
<_>
|
|
14 3 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1410280019044876</threshold>
|
|
<left_val>0.0425505004823208</left_val>
|
|
<right_val>-0.5261893272399902</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 1 4 -1.</_>
|
|
<_>
|
|
3 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0160464998334646</threshold>
|
|
<left_val>-0.2466184049844742</left_val>
|
|
<right_val>0.0813784524798393</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 1 4 -1.</_>
|
|
<_>
|
|
21 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0531627796590328</threshold>
|
|
<left_val>0.0352040007710457</left_val>
|
|
<right_val>-0.2831040918827057</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 22 2 -1.</_>
|
|
<_>
|
|
0 2 11 1 2.</_>
|
|
<_>
|
|
11 3 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0417232587933540</threshold>
|
|
<left_val>-0.2983017861843109</left_val>
|
|
<right_val>0.0801239535212517</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 3 3 -1.</_>
|
|
<_>
|
|
17 1 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0553928017616272</threshold>
|
|
<left_val>0.2219153046607971</left_val>
|
|
<right_val>-0.0897308215498924</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 3 3 -1.</_>
|
|
<_>
|
|
2 1 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0179573707282543</threshold>
|
|
<left_val>-0.0925520732998848</left_val>
|
|
<right_val>0.2500694096088409</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 12 5 -1.</_>
|
|
<_>
|
|
13 0 6 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.4046837985515595</threshold>
|
|
<left_val>0.1823135018348694</left_val>
|
|
<right_val>-0.1142465025186539</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 4 3 -1.</_>
|
|
<_>
|
|
11 2 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1204074025154114</threshold>
|
|
<left_val>0.4014413058757782</left_val>
|
|
<right_val>-0.0497754290699959</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 4 1 -1.</_>
|
|
<_>
|
|
11 0 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.1274770051240921</threshold>
|
|
<left_val>0.0286344606429338</left_val>
|
|
<right_val>-0.3693166971206665</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 3 2 2 -1.</_>
|
|
<_>
|
|
9 3 1 1 2.</_>
|
|
<_>
|
|
10 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1081299928482622e-004</threshold>
|
|
<left_val>0.1089978963136673</left_val>
|
|
<right_val>-0.1835806071758270</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 4 2 -1.</_>
|
|
<_>
|
|
16 0 2 1 2.</_>
|
|
<_>
|
|
14 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0202662907540798</threshold>
|
|
<left_val>-0.1147174015641213</left_val>
|
|
<right_val>0.2365763038396835</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 20 2 -1.</_>
|
|
<_>
|
|
0 3 10 1 2.</_>
|
|
<_>
|
|
10 4 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0938578322529793</threshold>
|
|
<left_val>-0.4446719884872437</left_val>
|
|
<right_val>0.0463233590126038</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 1 9 2 -1.</_>
|
|
<_>
|
|
16 1 3 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0390890501439571</threshold>
|
|
<left_val>0.0900571793317795</left_val>
|
|
<right_val>-0.2432890981435776</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 4 4 1 -1.</_>
|
|
<_>
|
|
10 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0116938799619675</threshold>
|
|
<left_val>-0.1343414038419724</left_val>
|
|
<right_val>0.1559841930866242</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 2 2 2 -1.</_>
|
|
<_>
|
|
12 2 1 1 2.</_>
|
|
<_>
|
|
11 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3392560251522809e-004</threshold>
|
|
<left_val>0.1066009029746056</left_val>
|
|
<right_val>-0.1503113955259323</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 2 2 -1.</_>
|
|
<_>
|
|
10 1 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0766542404890060</threshold>
|
|
<left_val>0.0466307103633881</left_val>
|
|
<right_val>-0.4484651982784271</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 2 2 -1.</_>
|
|
<_>
|
|
15 1 1 1 2.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.6552842035889626e-003</threshold>
|
|
<left_val>0.2990885972976685</left_val>
|
|
<right_val>-0.1449618041515350</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 3 1 -1.</_>
|
|
<_>
|
|
6 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.4779841341078281e-003</threshold>
|
|
<left_val>0.0570152290165424</left_val>
|
|
<right_val>-0.3590728938579559</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 6 1 -1.</_>
|
|
<_>
|
|
8 2 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0777626633644104</threshold>
|
|
<left_val>0.5025200247764587</left_val>
|
|
<right_val>-0.0435283817350864</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 4 22 1 -1.</_>
|
|
<_>
|
|
11 4 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1397587060928345</threshold>
|
|
<left_val>0.3465459942817688</left_val>
|
|
<right_val>-0.0520052611827850</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 2 1 -1.</_>
|
|
<_>
|
|
16 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0127599202096462</threshold>
|
|
<left_val>-0.6659132242202759</left_val>
|
|
<right_val>0.0209838803857565</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 2 1 -1.</_>
|
|
<_>
|
|
5 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0113625200465322</threshold>
|
|
<left_val>0.0222821906208992</left_val>
|
|
<right_val>-0.6685109138488770</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 6 3 -1.</_>
|
|
<_>
|
|
17 1 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2231232970952988</threshold>
|
|
<left_val>-0.4610581099987030</left_val>
|
|
<right_val>6.2970318831503391e-003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 1 2 -1.</_>
|
|
<_>
|
|
6 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>2.2931410057935864e-004</threshold>
|
|
<left_val>-0.2111182063817978</left_val>
|
|
<right_val>0.0817711725831032</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 4 4 -1.</_>
|
|
<_>
|
|
10 0 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0602262616157532</threshold>
|
|
<left_val>0.3254680931568146</left_val>
|
|
<right_val>-0.0216824002563953</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 2 1 -1.</_>
|
|
<_>
|
|
9 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.0173239065334201e-004</threshold>
|
|
<left_val>-0.3232026994228363</left_val>
|
|
<right_val>0.0708208531141281</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 2 2 -1.</_>
|
|
<_>
|
|
15 1 1 1 2.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6154008810408413e-004</threshold>
|
|
<left_val>0.0682233572006226</left_val>
|
|
<right_val>-0.1024259030818939</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 2 2 -1.</_>
|
|
<_>
|
|
6 1 1 1 2.</_>
|
|
<_>
|
|
7 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.4847848154604435e-003</threshold>
|
|
<left_val>0.2240424007177353</left_val>
|
|
<right_val>-0.0811881870031357</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 3 1 -1.</_>
|
|
<_>
|
|
16 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0185171104967594</threshold>
|
|
<left_val>-0.5528036952018738</left_val>
|
|
<right_val>0.0357043296098709</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 4 3 -1.</_>
|
|
<_>
|
|
10 2 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0813487470149994</threshold>
|
|
<left_val>-0.0777567028999329</left_val>
|
|
<right_val>0.2396816015243530</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 2 2 -1.</_>
|
|
<_>
|
|
20 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1357801053673029e-003</threshold>
|
|
<left_val>-0.3550890982151032</left_val>
|
|
<right_val>0.0334104485809803</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 3 1 -1.</_>
|
|
<_>
|
|
5 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6459500077180564e-004</threshold>
|
|
<left_val>0.1039851978421211</left_val>
|
|
<right_val>-0.1549458950757980</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 3 1 -1.</_>
|
|
<_>
|
|
19 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.7518890611827374e-003</threshold>
|
|
<left_val>0.3072158992290497</left_val>
|
|
<right_val>-0.1471019983291626</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 1 2 -1.</_>
|
|
<_>
|
|
0 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.8430210184305906e-003</threshold>
|
|
<left_val>-0.3927483856678009</left_val>
|
|
<right_val>0.0468359701335430</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 2 2 -1.</_>
|
|
<_>
|
|
21 3 1 1 2.</_>
|
|
<_>
|
|
20 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.1122969337739050e-004</threshold>
|
|
<left_val>-0.2182451039552689</left_val>
|
|
<right_val>0.1224329024553299</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 2 2 -1.</_>
|
|
<_>
|
|
0 3 1 1 2.</_>
|
|
<_>
|
|
1 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.2105030075181276e-004</threshold>
|
|
<left_val>-0.1839634031057358</left_val>
|
|
<right_val>0.0894107371568680</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 2 12 2 -1.</_>
|
|
<_>
|
|
13 2 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1596564948558807</threshold>
|
|
<left_val>0.0961632728576660</left_val>
|
|
<right_val>-0.0851516798138618</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 3 1 -1.</_>
|
|
<_>
|
|
2 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0300882197916508</threshold>
|
|
<left_val>-0.0395904183387756</left_val>
|
|
<right_val>0.4714989960193634</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 3 1 -1.</_>
|
|
<_>
|
|
20 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.0294209979474545e-003</threshold>
|
|
<left_val>0.1985325068235397</left_val>
|
|
<right_val>-0.1036683991551399</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 3 1 -1.</_>
|
|
<_>
|
|
1 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0125349396839738</threshold>
|
|
<left_val>-0.0465150997042656</left_val>
|
|
<right_val>0.3729344904422760</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 2 1 -1.</_>
|
|
<_>
|
|
20 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0249549709260464</threshold>
|
|
<left_val>0.0378106608986855</left_val>
|
|
<right_val>-0.2126975953578949</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 18 3 -1.</_>
|
|
<_>
|
|
8 1 6 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.9914733767509460</threshold>
|
|
<left_val>0.0404802709817886</left_val>
|
|
<right_val>-0.4234201908111572</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 3 2 -1.</_>
|
|
<_>
|
|
14 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.2983271889388561e-003</threshold>
|
|
<left_val>0.0872289612889290</left_val>
|
|
<right_val>-0.2782127857208252</right_val></_></_>
|
|
<_>
|
|
<!-- tree 68 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 20 1 -1.</_>
|
|
<_>
|
|
6 2 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1936049014329910</threshold>
|
|
<left_val>-0.0953638702630997</left_val>
|
|
<right_val>0.1918828040361404</right_val></_></_>
|
|
<_>
|
|
<!-- tree 69 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 2 1 -1.</_>
|
|
<_>
|
|
20 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0765724927186966</threshold>
|
|
<left_val>0.6624032855033875</left_val>
|
|
<right_val>-4.9499049782752991e-003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 70 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 3 2 -1.</_>
|
|
<_>
|
|
9 2 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0288803391158581</threshold>
|
|
<left_val>-0.0576803199946880</left_val>
|
|
<right_val>0.3216530978679657</right_val></_></_>
|
|
<_>
|
|
<!-- tree 71 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 2 1 -1.</_>
|
|
<_>
|
|
20 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0147415297105908</threshold>
|
|
<left_val>-0.0864769592881203</left_val>
|
|
<right_val>0.0324847102165222</right_val></_></_>
|
|
<_>
|
|
<!-- tree 72 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 1 2 -1.</_>
|
|
<_>
|
|
2 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0218243692070246</threshold>
|
|
<left_val>0.0573925487697124</left_val>
|
|
<right_val>-0.3441714048385620</right_val></_></_>
|
|
<_>
|
|
<!-- tree 73 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 16 2 -1.</_>
|
|
<_>
|
|
10 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2281226068735123</threshold>
|
|
<left_val>-0.5248197913169861</left_val>
|
|
<right_val>6.9780298508703709e-003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 74 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 16 2 -1.</_>
|
|
<_>
|
|
4 2 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2811104953289032</threshold>
|
|
<left_val>0.0243451707065105</left_val>
|
|
<right_val>-0.6498730182647705</right_val></_></_>
|
|
<_>
|
|
<!-- tree 75 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 3 4 2 -1.</_>
|
|
<_>
|
|
11 3 2 1 2.</_>
|
|
<_>
|
|
9 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0229572393000126</threshold>
|
|
<left_val>-0.4581542909145355</left_val>
|
|
<right_val>0.0302064307034016</right_val></_></_>
|
|
<_>
|
|
<!-- tree 76 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 4 4 -1.</_>
|
|
<_>
|
|
10 0 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0603400394320488</threshold>
|
|
<left_val>0.4640114009380341</left_val>
|
|
<right_val>-0.0372259803116322</right_val></_></_>
|
|
<_>
|
|
<!-- tree 77 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 3 1 -1.</_>
|
|
<_>
|
|
12 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0275691505521536</threshold>
|
|
<left_val>0.0209768600761890</left_val>
|
|
<right_val>-0.6901494860649109</right_val></_></_>
|
|
<_>
|
|
<!-- tree 78 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 2 1 -1.</_>
|
|
<_>
|
|
10 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.6252120733261108e-004</threshold>
|
|
<left_val>-0.2385396957397461</left_val>
|
|
<right_val>0.0797715634107590</right_val></_></_>
|
|
<_>
|
|
<!-- tree 79 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 2 1 -1.</_>
|
|
<_>
|
|
11 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0189698804169893</threshold>
|
|
<left_val>0.0310240201652050</left_val>
|
|
<right_val>-0.2781842947006226</right_val></_></_>
|
|
<_>
|
|
<!-- tree 80 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 16 3 -1.</_>
|
|
<_>
|
|
10 0 8 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.5228282809257507</threshold>
|
|
<left_val>0.0171059705317020</left_val>
|
|
<right_val>-0.7943431138992310</right_val></_></_>
|
|
<_>
|
|
<!-- tree 81 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 4 12 1 -1.</_>
|
|
<_>
|
|
8 4 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0318946912884712</threshold>
|
|
<left_val>0.2789232134819031</left_val>
|
|
<right_val>-0.0540697798132896</right_val></_></_>
|
|
<_>
|
|
<!-- tree 82 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 3 2 -1.</_>
|
|
<_>
|
|
7 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0153362900018692</threshold>
|
|
<left_val>0.0470543317496777</left_val>
|
|
<right_val>-0.3611122071743012</right_val></_></_>
|
|
<_>
|
|
<!-- tree 83 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 18 3 -1.</_>
|
|
<_>
|
|
10 3 6 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.4197083115577698</threshold>
|
|
<left_val>-0.5987181067466736</left_val>
|
|
<right_val>0.0114638302475214</right_val></_></_>
|
|
<_>
|
|
<!-- tree 84 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 2 2 -1.</_>
|
|
<_>
|
|
1 2 1 1 2.</_>
|
|
<_>
|
|
2 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.7562819458544254e-003</threshold>
|
|
<left_val>0.2296220064163208</left_val>
|
|
<right_val>-0.0647229403257370</right_val></_></_>
|
|
<_>
|
|
<!-- tree 85 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 1 1 3 -1.</_>
|
|
<_>
|
|
19 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.8668280988931656e-003</threshold>
|
|
<left_val>-0.0378440208733082</left_val>
|
|
<right_val>0.3308623135089874</right_val></_></_>
|
|
<_>
|
|
<!-- tree 86 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 4 1 -1.</_>
|
|
<_>
|
|
6 1 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0217330995947123</threshold>
|
|
<left_val>0.1095108985900879</left_val>
|
|
<right_val>-0.1400672048330307</right_val></_></_>
|
|
<_>
|
|
<!-- tree 87 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 2 2 -1.</_>
|
|
<_>
|
|
12 0 1 1 2.</_>
|
|
<_>
|
|
11 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0303408093750477</threshold>
|
|
<left_val>5.3396178409457207e-003</left_val>
|
|
<right_val>-0.6631283164024353</right_val></_></_>
|
|
<_>
|
|
<!-- tree 88 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 2 2 -1.</_>
|
|
<_>
|
|
9 0 1 1 2.</_>
|
|
<_>
|
|
10 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.7025368763133883e-004</threshold>
|
|
<left_val>-0.1567120999097824</left_val>
|
|
<right_val>0.0986059904098511</right_val></_></_>
|
|
<_>
|
|
<!-- tree 89 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 2 5 -1.</_>
|
|
<_>
|
|
10 0 1 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0415275506675243</threshold>
|
|
<left_val>0.2330273985862732</left_val>
|
|
<right_val>-0.0623291209340096</right_val></_></_>
|
|
<_>
|
|
<!-- tree 90 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
11 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0617230087518692</threshold>
|
|
<left_val>0.2415892928838730</left_val>
|
|
<right_val>-0.0955918580293655</right_val></_></_>
|
|
<_>
|
|
<!-- tree 91 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 3 1 -1.</_>
|
|
<_>
|
|
16 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.9920018538832664e-003</threshold>
|
|
<left_val>0.0676549896597862</left_val>
|
|
<right_val>-0.3348307907581329</right_val></_></_>
|
|
<_>
|
|
<!-- tree 92 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 4 3 -1.</_>
|
|
<_>
|
|
2 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1078263968229294</threshold>
|
|
<left_val>-0.0366013087332249</left_val>
|
|
<right_val>0.4491366147994995</right_val></_></_>
|
|
<_>
|
|
<!-- tree 93 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 3 1 -1.</_>
|
|
<_>
|
|
16 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0162226594984531</threshold>
|
|
<left_val>0.0174882691353559</left_val>
|
|
<right_val>-0.5831140279769898</right_val></_></_>
|
|
<_>
|
|
<!-- tree 94 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 3 1 -1.</_>
|
|
<_>
|
|
5 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0103788198903203</threshold>
|
|
<left_val>-0.3565832078456879</left_val>
|
|
<right_val>0.0370058007538319</right_val></_></_>
|
|
<_>
|
|
<!-- tree 95 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 2 2 -1.</_>
|
|
<_>
|
|
21 0 1 1 2.</_>
|
|
<_>
|
|
20 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.4412395954132080e-003</threshold>
|
|
<left_val>0.1430597007274628</left_val>
|
|
<right_val>-0.0507311187684536</right_val></_></_>
|
|
<_>
|
|
<!-- tree 96 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 8 4 -1.</_>
|
|
<_>
|
|
0 1 4 2 2.</_>
|
|
<_>
|
|
4 3 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1460002958774567</threshold>
|
|
<left_val>0.0325158499181271</left_val>
|
|
<right_val>-0.4505861103534699</right_val></_></_>
|
|
<_>
|
|
<!-- tree 97 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 18 3 -1.</_>
|
|
<_>
|
|
10 3 6 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.9812418222427368</threshold>
|
|
<left_val>4.8845731653273106e-003</left_val>
|
|
<right_val>-0.6505978107452393</right_val></_></_>
|
|
<_>
|
|
<!-- tree 98 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 18 3 -1.</_>
|
|
<_>
|
|
6 3 6 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.3686679005622864</threshold>
|
|
<left_val>-0.7344589829444885</left_val>
|
|
<right_val>0.0186632201075554</right_val></_></_></trees>
|
|
<stage_threshold>-1.5075240135192871</stage_threshold>
|
|
<parent>13</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 15 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 2 3 -1.</_>
|
|
<_>
|
|
7 0 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0355198308825493</threshold>
|
|
<left_val>0.1617852002382278</left_val>
|
|
<right_val>-0.3557350933551788</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 1 2 2 -1.</_>
|
|
<_>
|
|
12 1 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>9.1728484258055687e-003</threshold>
|
|
<left_val>-0.1260304003953934</left_val>
|
|
<right_val>0.1070927977561951</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 1 3 -1.</_>
|
|
<_>
|
|
10 1 1 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.2214298993349075</threshold>
|
|
<left_val>-7.7310669439611956e-006</left_val>
|
|
<right_val>-1.2306490478515625e+003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 2 2 -1.</_>
|
|
<_>
|
|
12 0 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.1121281981468201</threshold>
|
|
<left_val>9.6115162596106529e-003</left_val>
|
|
<right_val>-0.5591316819190979</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 2 2 -1.</_>
|
|
<_>
|
|
10 0 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0214573107659817</threshold>
|
|
<left_val>-0.3396573960781097</left_val>
|
|
<right_val>0.1660932004451752</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 4 2 -1.</_>
|
|
<_>
|
|
20 0 2 1 2.</_>
|
|
<_>
|
|
18 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0129726100713015</threshold>
|
|
<left_val>0.2339890003204346</left_val>
|
|
<right_val>-0.1611067950725555</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 2 2 -1.</_>
|
|
<_>
|
|
1 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.6818781197071075e-003</threshold>
|
|
<left_val>0.1347575038671494</left_val>
|
|
<right_val>-0.2744300961494446</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 3 1 2 -1.</_>
|
|
<_>
|
|
21 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5116768665611744e-004</threshold>
|
|
<left_val>-0.2640047967433929</left_val>
|
|
<right_val>0.1118483990430832</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 16 1 -1.</_>
|
|
<_>
|
|
8 2 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1044178009033203</threshold>
|
|
<left_val>-0.2772159874439240</left_val>
|
|
<right_val>0.1226371973752976</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 2 2 1 -1.</_>
|
|
<_>
|
|
17 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0103076398372650</threshold>
|
|
<left_val>0.4387269914150238</left_val>
|
|
<right_val>-0.2257290035486221</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 4 5 -1.</_>
|
|
<_>
|
|
1 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0657564774155617</threshold>
|
|
<left_val>-0.5489766001701355</left_val>
|
|
<right_val>0.0448703281581402</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 1 3 3 -1.</_>
|
|
<_>
|
|
14 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0232425201684237</threshold>
|
|
<left_val>0.1687006950378418</left_val>
|
|
<right_val>-0.2039787024259567</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 5 4 -1.</_>
|
|
<_>
|
|
4 3 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0568407289683819</threshold>
|
|
<left_val>-0.3538163900375366</left_val>
|
|
<right_val>0.0737606585025787</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 3 2 2 -1.</_>
|
|
<_>
|
|
19 3 1 1 2.</_>
|
|
<_>
|
|
18 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.8088671388104558e-004</threshold>
|
|
<left_val>0.0847699269652367</left_val>
|
|
<right_val>-0.0890894830226898</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 4 2 -1.</_>
|
|
<_>
|
|
8 2 2 1 2.</_>
|
|
<_>
|
|
10 3 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0288917198777199</threshold>
|
|
<left_val>-0.5387725830078125</left_val>
|
|
<right_val>0.0481997393071651</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 2 -1.</_>
|
|
<_>
|
|
15 2 1 1 2.</_>
|
|
<_>
|
|
14 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.8813000321388245e-003</threshold>
|
|
<left_val>-0.1096180975437164</left_val>
|
|
<right_val>0.2278506010770798</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 3 2 2 -1.</_>
|
|
<_>
|
|
2 3 1 1 2.</_>
|
|
<_>
|
|
3 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2791069932281971e-004</threshold>
|
|
<left_val>0.1515929996967316</left_val>
|
|
<right_val>-0.1536172926425934</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 3 1 -1.</_>
|
|
<_>
|
|
12 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0172245390713215</threshold>
|
|
<left_val>0.0263692494481802</left_val>
|
|
<right_val>-0.3927490115165710</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 3 1 -1.</_>
|
|
<_>
|
|
9 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0192765109241009</threshold>
|
|
<left_val>0.0391367189586163</left_val>
|
|
<right_val>-0.5336027741432190</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 4 2 -1.</_>
|
|
<_>
|
|
20 0 2 1 2.</_>
|
|
<_>
|
|
18 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0353499799966812</threshold>
|
|
<left_val>0.1689237952232361</left_val>
|
|
<right_val>-0.0447259806096554</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 4 1 -1.</_>
|
|
<_>
|
|
5 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.4690220016054809e-004</threshold>
|
|
<left_val>0.0976511463522911</left_val>
|
|
<right_val>-0.2252393066883087</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 4 2 -1.</_>
|
|
<_>
|
|
15 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3808020341675729e-004</threshold>
|
|
<left_val>0.0918731689453125</left_val>
|
|
<right_val>-0.2102558016777039</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 2 2 -1.</_>
|
|
<_>
|
|
6 2 1 1 2.</_>
|
|
<_>
|
|
7 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.2629360319115222e-004</threshold>
|
|
<left_val>-0.1301615983247757</left_val>
|
|
<right_val>0.1746802031993866</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 3 3 -1.</_>
|
|
<_>
|
|
17 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0685128867626190</threshold>
|
|
<left_val>0.2233822047710419</left_val>
|
|
<right_val>-0.2069347947835922</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 3 2 -1.</_>
|
|
<_>
|
|
5 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0229604393243790</threshold>
|
|
<left_val>-0.4152827858924866</left_val>
|
|
<right_val>0.0558899901807308</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 4 -1.</_>
|
|
<_>
|
|
9 1 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1233180016279221</threshold>
|
|
<left_val>-0.0728143826127052</left_val>
|
|
<right_val>0.3267267048358917</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 3 3 -1.</_>
|
|
<_>
|
|
7 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1549450010061264</threshold>
|
|
<left_val>-0.7887173891067505</left_val>
|
|
<right_val>0.0310064293444157</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 3 2 -1.</_>
|
|
<_>
|
|
15 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0314758606255054</threshold>
|
|
<left_val>-0.5589601993560791</left_val>
|
|
<right_val>0.0317612513899803</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 4 2 -1.</_>
|
|
<_>
|
|
0 0 2 1 2.</_>
|
|
<_>
|
|
2 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0254820995032787</threshold>
|
|
<left_val>0.2539067864418030</left_val>
|
|
<right_val>-0.0870282873511314</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 2 2 1 -1.</_>
|
|
<_>
|
|
17 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.5384381297044456e-004</threshold>
|
|
<left_val>0.0537054501473904</left_val>
|
|
<right_val>-0.1235295012593269</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 3 2 -1.</_>
|
|
<_>
|
|
6 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0272925905883312</threshold>
|
|
<left_val>-0.5135846734046936</left_val>
|
|
<right_val>0.0360357984900475</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 4 3 -1.</_>
|
|
<_>
|
|
16 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0507335886359215</threshold>
|
|
<left_val>-0.0516890287399292</left_val>
|
|
<right_val>0.3995021879673004</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 3 5 2 -1.</_>
|
|
<_>
|
|
4 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1053168997168541</threshold>
|
|
<left_val>0.0349466502666473</left_val>
|
|
<right_val>-0.5719997882843018</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 4 3 1 -1.</_>
|
|
<_>
|
|
18 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.6800240203738213e-003</threshold>
|
|
<left_val>0.0491173714399338</left_val>
|
|
<right_val>-0.4794890880584717</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 2 1 -1.</_>
|
|
<_>
|
|
4 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7255711029283702e-004</threshold>
|
|
<left_val>0.0928098186850548</left_val>
|
|
<right_val>-0.1955388933420181</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 4 3 1 -1.</_>
|
|
<_>
|
|
18 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0105343302711844</threshold>
|
|
<left_val>-0.5163537859916687</left_val>
|
|
<right_val>0.0396977588534355</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 4 6 1 -1.</_>
|
|
<_>
|
|
8 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0149531802162528</threshold>
|
|
<left_val>0.1626240015029907</left_val>
|
|
<right_val>-0.1271512061357498</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 1 16 2 -1.</_>
|
|
<_>
|
|
13 1 8 1 2.</_>
|
|
<_>
|
|
5 2 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0604328215122223</threshold>
|
|
<left_val>0.1645521968603134</left_val>
|
|
<right_val>-0.0379642993211746</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 3 1 -1.</_>
|
|
<_>
|
|
3 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0130542898550630</threshold>
|
|
<left_val>-0.6074082255363464</left_val>
|
|
<right_val>0.0316967517137527</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 14 2 -1.</_>
|
|
<_>
|
|
13 1 7 1 2.</_>
|
|
<_>
|
|
6 2 7 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1608176976442337</threshold>
|
|
<left_val>-6.5205618739128113e-004</left_val>
|
|
<right_val>-0.4585787057876587</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 14 2 -1.</_>
|
|
<_>
|
|
2 1 7 1 2.</_>
|
|
<_>
|
|
9 2 7 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0341188199818134</threshold>
|
|
<left_val>-0.1164626032114029</left_val>
|
|
<right_val>0.1578840017318726</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 4 2 -1.</_>
|
|
<_>
|
|
16 2 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0377329401671886</threshold>
|
|
<left_val>-0.0387539491057396</left_val>
|
|
<right_val>0.1349529027938843</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 1 6 2 -1.</_>
|
|
<_>
|
|
8 1 3 1 2.</_>
|
|
<_>
|
|
11 2 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0307118799537420</threshold>
|
|
<left_val>0.0477422587573528</left_val>
|
|
<right_val>-0.4303537011146545</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 4 3 -1.</_>
|
|
<_>
|
|
16 2 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0379499495029449</threshold>
|
|
<left_val>0.1175562962889671</left_val>
|
|
<right_val>-0.1488959044218063</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 4 2 -1.</_>
|
|
<_>
|
|
2 2 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0293602906167507</threshold>
|
|
<left_val>-0.0752530172467232</left_val>
|
|
<right_val>0.2932392060756683</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 8 5 -1.</_>
|
|
<_>
|
|
10 0 4 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2531990110874176</threshold>
|
|
<left_val>-0.1665869951248169</left_val>
|
|
<right_val>0.0894998088479042</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 6 3 -1.</_>
|
|
<_>
|
|
8 1 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1295928955078125</threshold>
|
|
<left_val>-0.0557844601571560</left_val>
|
|
<right_val>0.3491880893707275</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 1 2 2 -1.</_>
|
|
<_>
|
|
20 1 1 1 2.</_>
|
|
<_>
|
|
19 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.8244248181581497e-003</threshold>
|
|
<left_val>0.2790288925170898</left_val>
|
|
<right_val>-0.0682061314582825</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 4 4 -1.</_>
|
|
<_>
|
|
10 0 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0787913799285889</threshold>
|
|
<left_val>-0.1562068015336990</left_val>
|
|
<right_val>0.1130442023277283</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 2 1 -1.</_>
|
|
<_>
|
|
19 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0128360297530890</threshold>
|
|
<left_val>-0.2341040968894959</left_val>
|
|
<right_val>0.0688050165772438</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 20 4 -1.</_>
|
|
<_>
|
|
0 0 10 2 2.</_>
|
|
<_>
|
|
10 2 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0795226991176605</threshold>
|
|
<left_val>-0.2531400918960571</left_val>
|
|
<right_val>0.0608972907066345</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 1 3 4 -1.</_>
|
|
<_>
|
|
19 3 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0396368205547333</threshold>
|
|
<left_val>-0.2644801139831543</left_val>
|
|
<right_val>0.0823834836483002</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 22 2 -1.</_>
|
|
<_>
|
|
11 3 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2469912022352219</threshold>
|
|
<left_val>0.3543556034564972</left_val>
|
|
<right_val>-0.0668885484337807</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 2 2 -1.</_>
|
|
<_>
|
|
15 1 1 1 2.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2949569392949343e-004</threshold>
|
|
<left_val>0.1136023998260498</left_val>
|
|
<right_val>-0.1477279961109161</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 2 2 -1.</_>
|
|
<_>
|
|
6 1 1 1 2.</_>
|
|
<_>
|
|
7 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0133122596889734</threshold>
|
|
<left_val>0.3158606886863709</left_val>
|
|
<right_val>-0.0559014193713665</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 1 2 -1.</_>
|
|
<_>
|
|
14 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0132037801668048</threshold>
|
|
<left_val>0.0314864404499531</left_val>
|
|
<right_val>-0.2641296088695526</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0122691998258233</threshold>
|
|
<left_val>-0.5923423767089844</left_val>
|
|
<right_val>0.0242486894130707</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 3 1 -1.</_>
|
|
<_>
|
|
16 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0180592201650143</threshold>
|
|
<left_val>0.3386563062667847</left_val>
|
|
<right_val>-0.0806968286633492</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 2 1 -1.</_>
|
|
<_>
|
|
8 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5429509696550667e-004</threshold>
|
|
<left_val>-0.2228489965200424</left_val>
|
|
<right_val>0.0742115974426270</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 1 2 2 -1.</_>
|
|
<_>
|
|
20 1 1 1 2.</_>
|
|
<_>
|
|
19 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.8134778887033463e-003</threshold>
|
|
<left_val>-0.0429794192314148</left_val>
|
|
<right_val>0.1561470925807953</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 2 2 -1.</_>
|
|
<_>
|
|
1 1 1 1 2.</_>
|
|
<_>
|
|
2 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0109792295843363</threshold>
|
|
<left_val>0.2791073024272919</left_val>
|
|
<right_val>-0.0565107986330986</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 1 2 -1.</_>
|
|
<_>
|
|
21 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0179905295372009</threshold>
|
|
<left_val>-0.6046596169471741</left_val>
|
|
<right_val>0.0311555694788694</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 1 2 -1.</_>
|
|
<_>
|
|
0 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0112548498436809</threshold>
|
|
<left_val>0.0487176403403282</left_val>
|
|
<right_val>-0.3375760018825531</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 3 1 -1.</_>
|
|
<_>
|
|
13 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6132029597647488e-004</threshold>
|
|
<left_val>0.1056291982531548</left_val>
|
|
<right_val>-0.1343839019536972</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 2 2 -1.</_>
|
|
<_>
|
|
0 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.1210080273449421e-003</threshold>
|
|
<left_val>-0.5522217750549316</left_val>
|
|
<right_val>0.0265667103230953</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 3 1 -1.</_>
|
|
<_>
|
|
13 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0246724095195532</threshold>
|
|
<left_val>9.7258696332573891e-003</left_val>
|
|
<right_val>-0.6160507798194885</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 3 8 2 -1.</_>
|
|
<_>
|
|
6 3 4 1 2.</_>
|
|
<_>
|
|
10 4 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0676949620246887</threshold>
|
|
<left_val>-0.7366021275520325</left_val>
|
|
<right_val>0.0195282194763422</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 3 1 -1.</_>
|
|
<_>
|
|
13 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0280081909149885</threshold>
|
|
<left_val>-0.5081465244293213</left_val>
|
|
<right_val>0.0101704103872180</right_val></_></_>
|
|
<_>
|
|
<!-- tree 68 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 3 1 -1.</_>
|
|
<_>
|
|
1 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.1907560341060162e-003</threshold>
|
|
<left_val>0.1463394016027451</left_val>
|
|
<right_val>-0.1010674014687538</right_val></_></_>
|
|
<_>
|
|
<!-- tree 69 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 2 2 2 -1.</_>
|
|
<_>
|
|
10 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0151786198839545</threshold>
|
|
<left_val>0.2253026068210602</left_val>
|
|
<right_val>-0.0712036490440369</right_val></_></_>
|
|
<_>
|
|
<!-- tree 70 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 2 4 -1.</_>
|
|
<_>
|
|
11 1 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0177353993058205</threshold>
|
|
<left_val>0.1873757988214493</left_val>
|
|
<right_val>-0.0931500867009163</right_val></_></_>
|
|
<_>
|
|
<!-- tree 71 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 3 1 -1.</_>
|
|
<_>
|
|
13 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.6827311376109719e-004</threshold>
|
|
<left_val>-0.0509754493832588</left_val>
|
|
<right_val>0.0780920535326004</right_val></_></_>
|
|
<_>
|
|
<!-- tree 72 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 3 1 -1.</_>
|
|
<_>
|
|
8 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0153298303484917</threshold>
|
|
<left_val>0.0317088216543198</left_val>
|
|
<right_val>-0.4852918982505798</right_val></_></_>
|
|
<_>
|
|
<!-- tree 73 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 4 2 -1.</_>
|
|
<_>
|
|
19 1 2 1 2.</_>
|
|
<_>
|
|
17 2 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8564469539560378e-004</threshold>
|
|
<left_val>-0.0747290104627609</left_val>
|
|
<right_val>0.0735304802656174</right_val></_></_>
|
|
<_>
|
|
<!-- tree 74 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 4 2 -1.</_>
|
|
<_>
|
|
1 1 2 1 2.</_>
|
|
<_>
|
|
3 2 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0221204292029142</threshold>
|
|
<left_val>0.2728720009326935</left_val>
|
|
<right_val>-0.0640629082918167</right_val></_></_>
|
|
<_>
|
|
<!-- tree 75 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 2 1 -1.</_>
|
|
<_>
|
|
18 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1887499315198511e-004</threshold>
|
|
<left_val>0.0630310028791428</left_val>
|
|
<right_val>-0.0968450531363487</right_val></_></_>
|
|
<_>
|
|
<!-- tree 76 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 2 1 -1.</_>
|
|
<_>
|
|
3 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1083210594952106e-004</threshold>
|
|
<left_val>0.1038902029395104</left_val>
|
|
<right_val>-0.1652563959360123</right_val></_></_>
|
|
<_>
|
|
<!-- tree 77 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 2 2 -1.</_>
|
|
<_>
|
|
19 2 1 1 2.</_>
|
|
<_>
|
|
18 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.2754601240158081e-003</threshold>
|
|
<left_val>0.2422588020563126</left_val>
|
|
<right_val>-0.0759079232811928</right_val></_></_>
|
|
<_>
|
|
<!-- tree 78 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 2 2 -1.</_>
|
|
<_>
|
|
3 0 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0237578097730875</threshold>
|
|
<left_val>-0.3831805884838104</left_val>
|
|
<right_val>0.0401335097849369</right_val></_></_>
|
|
<_>
|
|
<!-- tree 79 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 2 2 -1.</_>
|
|
<_>
|
|
19 2 1 1 2.</_>
|
|
<_>
|
|
18 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0113250697031617</threshold>
|
|
<left_val>-0.0355255305767059</left_val>
|
|
<right_val>0.2116439938545227</right_val></_></_>
|
|
<_>
|
|
<!-- tree 80 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 3 1 -1.</_>
|
|
<_>
|
|
8 1 1 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0722206532955170</threshold>
|
|
<left_val>-0.6267685294151306</left_val>
|
|
<right_val>0.0221659094095230</right_val></_></_>
|
|
<_>
|
|
<!-- tree 81 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 2 2 -1.</_>
|
|
<_>
|
|
19 2 1 1 2.</_>
|
|
<_>
|
|
18 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0450176112353802</threshold>
|
|
<left_val>-0.7715169787406921</left_val>
|
|
<right_val>7.7348982449620962e-004</right_val></_></_>
|
|
<_>
|
|
<!-- tree 82 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 2 2 2 -1.</_>
|
|
<_>
|
|
2 2 1 1 2.</_>
|
|
<_>
|
|
3 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.2360418960452080e-003</threshold>
|
|
<left_val>0.2645697891712189</left_val>
|
|
<right_val>-0.0533634796738625</right_val></_></_>
|
|
<_>
|
|
<!-- tree 83 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 2 1 2 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.5355370598845184e-004</threshold>
|
|
<left_val>0.0403987504541874</left_val>
|
|
<right_val>-0.1579526960849762</right_val></_></_>
|
|
<_>
|
|
<!-- tree 84 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 2 2 1 -1.</_>
|
|
<_>
|
|
2 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0462715588510036</threshold>
|
|
<left_val>-0.4078798890113831</left_val>
|
|
<right_val>0.0389214716851711</right_val></_></_>
|
|
<_>
|
|
<!-- tree 85 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 5 2 -1.</_>
|
|
<_>
|
|
13 1 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0112186595797539</threshold>
|
|
<left_val>0.0743954926729202</left_val>
|
|
<right_val>-0.1334968060255051</right_val></_></_>
|
|
<_>
|
|
<!-- tree 86 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 3 10 2 -1.</_>
|
|
<_>
|
|
6 3 5 1 2.</_>
|
|
<_>
|
|
11 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0422749705612659</threshold>
|
|
<left_val>0.0375597998499870</left_val>
|
|
<right_val>-0.3565911948680878</right_val></_></_>
|
|
<_>
|
|
<!-- tree 87 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 2 2 -1.</_>
|
|
<_>
|
|
11 3 1 1 2.</_>
|
|
<_>
|
|
10 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.1554719470441341e-003</threshold>
|
|
<left_val>0.0328388698399067</left_val>
|
|
<right_val>-0.3969492018222809</right_val></_></_>
|
|
<_>
|
|
<!-- tree 88 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 2 8 3 -1.</_>
|
|
<_>
|
|
6 2 4 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2889994978904724</threshold>
|
|
<left_val>0.0218638405203819</left_val>
|
|
<right_val>-0.5641658902168274</right_val></_></_>
|
|
<_>
|
|
<!-- tree 89 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 3 3 1 -1.</_>
|
|
<_>
|
|
13 3 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0198637600988150</threshold>
|
|
<left_val>0.2233767956495285</left_val>
|
|
<right_val>-0.0311224795877934</right_val></_></_>
|
|
<_>
|
|
<!-- tree 90 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 16 1 -1.</_>
|
|
<_>
|
|
10 4 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0201476793736219</threshold>
|
|
<left_val>-0.1318303048610687</left_val>
|
|
<right_val>0.1064788028597832</right_val></_></_>
|
|
<_>
|
|
<!-- tree 91 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 2 3 2 -1.</_>
|
|
<_>
|
|
13 2 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0210211295634508</threshold>
|
|
<left_val>-0.0279414597898722</left_val>
|
|
<right_val>0.1496804952621460</right_val></_></_>
|
|
<_>
|
|
<!-- tree 92 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 3 2 -1.</_>
|
|
<_>
|
|
8 2 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.0801073238253593e-003</threshold>
|
|
<left_val>-0.0714284330606461</left_val>
|
|
<right_val>0.2156967967748642</right_val></_></_>
|
|
<_>
|
|
<!-- tree 93 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 2 2 2 -1.</_>
|
|
<_>
|
|
12 2 1 1 2.</_>
|
|
<_>
|
|
11 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0210751108825207</threshold>
|
|
<left_val>-0.6355488896369934</left_val>
|
|
<right_val>0.0148590896278620</right_val></_></_>
|
|
<_>
|
|
<!-- tree 94 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 2 2 -1.</_>
|
|
<_>
|
|
9 2 1 1 2.</_>
|
|
<_>
|
|
10 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6902920217253268e-004</threshold>
|
|
<left_val>0.1086373031139374</left_val>
|
|
<right_val>-0.1504798978567123</right_val></_></_>
|
|
<_>
|
|
<!-- tree 95 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 4 2 -1.</_>
|
|
<_>
|
|
17 2 2 1 2.</_>
|
|
<_>
|
|
15 3 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1716268858872354e-004</threshold>
|
|
<left_val>0.0856569930911064</left_val>
|
|
<right_val>-0.1238802000880241</right_val></_></_>
|
|
<_>
|
|
<!-- tree 96 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 8 5 -1.</_>
|
|
<_>
|
|
8 0 4 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2543228864669800</threshold>
|
|
<left_val>-0.0996628925204277</left_val>
|
|
<right_val>0.1379338055849075</right_val></_></_>
|
|
<_>
|
|
<!-- tree 97 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 2 2 1 -1.</_>
|
|
<_>
|
|
13 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0351566113531590</threshold>
|
|
<left_val>0.0276070702821016</left_val>
|
|
<right_val>-0.3085579872131348</right_val></_></_>
|
|
<_>
|
|
<!-- tree 98 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 1 2 -1.</_>
|
|
<_>
|
|
9 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.1319420668296516e-004</threshold>
|
|
<left_val>0.0933624133467674</left_val>
|
|
<right_val>-0.1582736968994141</right_val></_></_>
|
|
<_>
|
|
<!-- tree 99 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 4 2 -1.</_>
|
|
<_>
|
|
17 2 2 1 2.</_>
|
|
<_>
|
|
15 3 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.2236700169742107e-004</threshold>
|
|
<left_val>-0.0268055405467749</left_val>
|
|
<right_val>0.0416803695261478</right_val></_></_>
|
|
<_>
|
|
<!-- tree 100 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 4 2 -1.</_>
|
|
<_>
|
|
3 2 2 1 2.</_>
|
|
<_>
|
|
5 3 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2599179646931589e-004</threshold>
|
|
<left_val>0.1031626984477043</left_val>
|
|
<right_val>-0.1553778052330017</right_val></_></_>
|
|
<_>
|
|
<!-- tree 101 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 4 2 -1.</_>
|
|
<_>
|
|
18 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0131764104589820</threshold>
|
|
<left_val>0.0482045710086823</left_val>
|
|
<right_val>-0.1634005010128021</right_val></_></_>
|
|
<_>
|
|
<!-- tree 102 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 4 2 -1.</_>
|
|
<_>
|
|
2 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0366892404854298</threshold>
|
|
<left_val>-0.5666003227233887</left_val>
|
|
<right_val>0.0216245893388987</right_val></_></_>
|
|
<_>
|
|
<!-- tree 103 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 4 2 -1.</_>
|
|
<_>
|
|
16 0 2 1 2.</_>
|
|
<_>
|
|
14 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0254966802895069</threshold>
|
|
<left_val>-0.0464780293405056</left_val>
|
|
<right_val>0.1221868023276329</right_val></_></_>
|
|
<_>
|
|
<!-- tree 104 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 1 3 1 -1.</_>
|
|
<_>
|
|
12 2 1 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0127627197653055</threshold>
|
|
<left_val>-0.1167680993676186</left_val>
|
|
<right_val>0.1235193982720375</right_val></_></_></trees>
|
|
<stage_threshold>-1.4267690181732178</stage_threshold>
|
|
<parent>14</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 16 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 3 2 -1.</_>
|
|
<_>
|
|
4 2 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0126805501058698</threshold>
|
|
<left_val>0.2194640040397644</left_val>
|
|
<right_val>-0.3034295141696930</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 10 3 -1.</_>
|
|
<_>
|
|
9 0 5 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2027722001075745</threshold>
|
|
<left_val>-0.3529298901557922</left_val>
|
|
<right_val>0.0818885788321495</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 3 2 -1.</_>
|
|
<_>
|
|
3 1 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0420491583645344</threshold>
|
|
<left_val>0.2480846047401428</left_val>
|
|
<right_val>-0.1789755970239639</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 1 2 4 -1.</_>
|
|
<_>
|
|
11 1 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0373815894126892</threshold>
|
|
<left_val>-0.1080716997385025</left_val>
|
|
<right_val>0.1355669945478439</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 16 1 -1.</_>
|
|
<_>
|
|
9 2 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0898792669177055</threshold>
|
|
<left_val>-0.3144111037254334</left_val>
|
|
<right_val>0.1164997965097427</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.2849619563203305e-004</threshold>
|
|
<left_val>0.1204447969794273</left_val>
|
|
<right_val>-0.1587626934051514</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 3 1 -1.</_>
|
|
<_>
|
|
6 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0197688303887844</threshold>
|
|
<left_val>-0.1005569025874138</left_val>
|
|
<right_val>0.3598122894763947</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 1 4 -1.</_>
|
|
<_>
|
|
21 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.6854061074554920e-003</threshold>
|
|
<left_val>-0.2215726971626282</left_val>
|
|
<right_val>0.0940313562750816</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 1 2 -1.</_>
|
|
<_>
|
|
7 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.6115920627489686e-004</threshold>
|
|
<left_val>0.0738363713026047</left_val>
|
|
<right_val>-0.2855063080787659</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 6 2 -1.</_>
|
|
<_>
|
|
12 3 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0531009398400784</threshold>
|
|
<left_val>-0.0566674806177616</left_val>
|
|
<right_val>0.2398404031991959</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 2 2 -1.</_>
|
|
<_>
|
|
0 1 1 1 2.</_>
|
|
<_>
|
|
1 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.0975299665005878e-004</threshold>
|
|
<left_val>0.1155333966016769</left_val>
|
|
<right_val>-0.2110487073659897</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 22 4 -1.</_>
|
|
<_>
|
|
11 0 11 2 2.</_>
|
|
<_>
|
|
0 2 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.3080747127532959</threshold>
|
|
<left_val>-0.4916175007820129</left_val>
|
|
<right_val>0.0521330609917641</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 2 2 2 -1.</_>
|
|
<_>
|
|
2 2 1 1 2.</_>
|
|
<_>
|
|
3 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.5257293432950974e-003</threshold>
|
|
<left_val>-0.0939754992723465</left_val>
|
|
<right_val>0.3000304996967316</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 14 2 -1.</_>
|
|
<_>
|
|
11 2 7 1 2.</_>
|
|
<_>
|
|
4 3 7 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0479064993560314</threshold>
|
|
<left_val>0.0510066412389278</left_val>
|
|
<right_val>-0.4533003866672516</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 4 4 1 -1.</_>
|
|
<_>
|
|
2 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.1151742488145828e-003</threshold>
|
|
<left_val>0.0535905212163925</left_val>
|
|
<right_val>-0.3858076930046082</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 4 6 1 -1.</_>
|
|
<_>
|
|
10 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0115232598036528</threshold>
|
|
<left_val>-0.2229443043470383</left_val>
|
|
<right_val>0.0907559692859650</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 5 4 -1.</_>
|
|
<_>
|
|
4 1 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0570370294153690</threshold>
|
|
<left_val>0.1140248998999596</left_val>
|
|
<right_val>-0.1793856024742127</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 4 3 -1.</_>
|
|
<_>
|
|
16 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0963431894779205</threshold>
|
|
<left_val>0.2599610984325409</left_val>
|
|
<right_val>-0.0678420215845108</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 4 3 -1.</_>
|
|
<_>
|
|
2 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0538529604673386</threshold>
|
|
<left_val>-0.0825551375746727</left_val>
|
|
<right_val>0.3720957040786743</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 2 1 -1.</_>
|
|
<_>
|
|
12 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.2167631434276700e-004</threshold>
|
|
<left_val>-0.3507750034332275</left_val>
|
|
<right_val>0.0821119621396065</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 22 2 -1.</_>
|
|
<_>
|
|
0 3 11 1 2.</_>
|
|
<_>
|
|
11 4 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0564907491207123</threshold>
|
|
<left_val>-0.3229841887950897</left_val>
|
|
<right_val>0.0538763888180256</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 2 1 -1.</_>
|
|
<_>
|
|
16 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7906559989787638e-004</threshold>
|
|
<left_val>0.1558347046375275</left_val>
|
|
<right_val>-0.2573314905166626</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 4 6 1 -1.</_>
|
|
<_>
|
|
2 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0382157601416111</threshold>
|
|
<left_val>-0.4869484007358551</left_val>
|
|
<right_val>0.0375617593526840</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 1 3 -1.</_>
|
|
<_>
|
|
18 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.6500251889228821e-003</threshold>
|
|
<left_val>-0.0622060298919678</left_val>
|
|
<right_val>0.2777954936027527</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 6 3 -1.</_>
|
|
<_>
|
|
3 2 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0223919898271561</threshold>
|
|
<left_val>0.0567261911928654</left_val>
|
|
<right_val>-0.3096722066402435</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 1 3 -1.</_>
|
|
<_>
|
|
18 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0288605708628893</threshold>
|
|
<left_val>0.2171639055013657</left_val>
|
|
<right_val>-0.0595195591449738</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 1 3 -1.</_>
|
|
<_>
|
|
3 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.9423289969563484e-003</threshold>
|
|
<left_val>-0.0510598309338093</left_val>
|
|
<right_val>0.4046814143657684</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 3 1 2 -1.</_>
|
|
<_>
|
|
21 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0140064498409629</threshold>
|
|
<left_val>0.0495527796447277</left_val>
|
|
<right_val>-0.1997963041067123</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 1 2 -1.</_>
|
|
<_>
|
|
0 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.7382301050238311e-004</threshold>
|
|
<left_val>-0.3052073121070862</left_val>
|
|
<right_val>0.0695639625191689</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 2 1 -1.</_>
|
|
<_>
|
|
16 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0151743097230792</threshold>
|
|
<left_val>-0.3825840950012207</left_val>
|
|
<right_val>0.0219741594046354</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 2 1 -1.</_>
|
|
<_>
|
|
5 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.9322619482409209e-004</threshold>
|
|
<left_val>0.1185929030179977</left_val>
|
|
<right_val>-0.1750292032957077</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 12 3 -1.</_>
|
|
<_>
|
|
12 1 4 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.5898758172988892</threshold>
|
|
<left_val>-0.6428133249282837</left_val>
|
|
<right_val>0.0170734506100416</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 4 1 -1.</_>
|
|
<_>
|
|
9 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5915939477272332e-004</threshold>
|
|
<left_val>-0.2325448989868164</left_val>
|
|
<right_val>0.0648522824048996</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 8 4 -1.</_>
|
|
<_>
|
|
10 0 4 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.5708745121955872</threshold>
|
|
<left_val>7.8144967555999756e-003</left_val>
|
|
<right_val>-0.6534169912338257</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 4 -1.</_>
|
|
<_>
|
|
11 0 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0880111008882523</threshold>
|
|
<left_val>-0.0650307089090347</left_val>
|
|
<right_val>0.2522613108158112</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 12 3 -1.</_>
|
|
<_>
|
|
12 1 4 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0115374401211739</threshold>
|
|
<left_val>0.0258980691432953</left_val>
|
|
<right_val>-0.0485799610614777</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 12 3 -1.</_>
|
|
<_>
|
|
6 1 4 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.4653395116329193</threshold>
|
|
<left_val>-0.4928914904594421</left_val>
|
|
<right_val>0.0366029702126980</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 8 4 -1.</_>
|
|
<_>
|
|
10 0 4 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.6187191009521484</threshold>
|
|
<left_val>-2.2136380430310965e-003</left_val>
|
|
<right_val>-0.7480828166007996</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 8 4 -1.</_>
|
|
<_>
|
|
8 0 4 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.5378053188323975</threshold>
|
|
<left_val>0.0291653908789158</left_val>
|
|
<right_val>-0.5173789858818054</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 6 4 -1.</_>
|
|
<_>
|
|
12 1 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2519442141056061</threshold>
|
|
<left_val>-0.0285676196217537</left_val>
|
|
<right_val>0.4221490025520325</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 3 3 -1.</_>
|
|
<_>
|
|
10 2 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0274908300489187</threshold>
|
|
<left_val>-0.1249886006116867</left_val>
|
|
<right_val>0.1562238931655884</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 6 4 -1.</_>
|
|
<_>
|
|
12 1 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1806313991546631</threshold>
|
|
<left_val>-0.0163250491023064</left_val>
|
|
<right_val>0.1323429048061371</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 6 4 -1.</_>
|
|
<_>
|
|
8 1 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1738668978214264</threshold>
|
|
<left_val>-0.0489186011254787</left_val>
|
|
<right_val>0.4147368073463440</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 10 2 -1.</_>
|
|
<_>
|
|
11 2 5 1 2.</_>
|
|
<_>
|
|
6 3 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0499421507120132</threshold>
|
|
<left_val>-0.4714230895042419</left_val>
|
|
<right_val>0.0378924496471882</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 15 3 -1.</_>
|
|
<_>
|
|
7 2 5 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.8202174901962280</threshold>
|
|
<left_val>0.0239661596715450</left_val>
|
|
<right_val>-0.5435004234313965</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 2 1 -1.</_>
|
|
<_>
|
|
14 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5848631048575044e-004</threshold>
|
|
<left_val>-0.1057196035981178</left_val>
|
|
<right_val>0.0487360209226608</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 3 1 -1.</_>
|
|
<_>
|
|
2 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.0050835385918617e-003</threshold>
|
|
<left_val>0.1960175931453705</left_val>
|
|
<right_val>-0.0707343071699142</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 15 1 -1.</_>
|
|
<_>
|
|
9 2 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3124977946281433</threshold>
|
|
<left_val>-0.0346124917268753</left_val>
|
|
<right_val>0.2072722017765045</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 3 1 -1.</_>
|
|
<_>
|
|
5 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0165950097143650</threshold>
|
|
<left_val>-0.0553347915410995</left_val>
|
|
<right_val>0.3236283063888550</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 2 1 -1.</_>
|
|
<_>
|
|
14 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.6122892312705517e-003</threshold>
|
|
<left_val>0.0648118481040001</left_val>
|
|
<right_val>-0.1037767007946968</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 9 2 -1.</_>
|
|
<_>
|
|
3 1 3 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0555340386927128</threshold>
|
|
<left_val>0.0910528078675270</left_val>
|
|
<right_val>-0.1942782998085022</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 2 1 2 -1.</_>
|
|
<_>
|
|
21 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.2657270096242428e-003</threshold>
|
|
<left_val>-0.3721610009670258</left_val>
|
|
<right_val>0.0351289287209511</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 1 2 -1.</_>
|
|
<_>
|
|
0 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.1315821260213852e-003</threshold>
|
|
<left_val>-0.4001424014568329</left_val>
|
|
<right_val>0.0363785400986671</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 22 1 -1.</_>
|
|
<_>
|
|
0 3 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1546691060066223</threshold>
|
|
<left_val>0.2241909950971603</left_val>
|
|
<right_val>-0.0645142272114754</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 16 2 -1.</_>
|
|
<_>
|
|
4 3 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0567202009260654</threshold>
|
|
<left_val>-0.2784695923328400</left_val>
|
|
<right_val>0.0651087835431099</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 3 1 -1.</_>
|
|
<_>
|
|
16 2 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0117585696280003</threshold>
|
|
<left_val>0.1950017958879471</left_val>
|
|
<right_val>-0.0803164392709732</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 3 1 -1.</_>
|
|
<_>
|
|
5 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.2118507921695709e-003</threshold>
|
|
<left_val>0.0487297289073467</left_val>
|
|
<right_val>-0.2942777872085571</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 6 2 -1.</_>
|
|
<_>
|
|
17 0 3 1 2.</_>
|
|
<_>
|
|
14 1 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0311635509133339</threshold>
|
|
<left_val>-0.0396496094763279</left_val>
|
|
<right_val>0.1087224036455154</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 6 2 -1.</_>
|
|
<_>
|
|
2 0 3 1 2.</_>
|
|
<_>
|
|
5 1 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0187317896634340</threshold>
|
|
<left_val>0.2549884915351868</left_val>
|
|
<right_val>-0.0570606589317322</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 3 2 2 -1.</_>
|
|
<_>
|
|
12 3 1 1 2.</_>
|
|
<_>
|
|
11 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.9629219605121762e-004</threshold>
|
|
<left_val>0.0609826892614365</left_val>
|
|
<right_val>-0.1056500002741814</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 2 2 -1.</_>
|
|
<_>
|
|
0 0 1 1 2.</_>
|
|
<_>
|
|
1 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0112534696236253</threshold>
|
|
<left_val>0.2410207986831665</left_val>
|
|
<right_val>-0.0549335293471813</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 4 2 -1.</_>
|
|
<_>
|
|
18 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0184186305850744</threshold>
|
|
<left_val>-0.2154302000999451</left_val>
|
|
<right_val>0.0418593809008598</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 4 2 -1.</_>
|
|
<_>
|
|
2 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0269794706255198</threshold>
|
|
<left_val>-0.4404479861259460</left_val>
|
|
<right_val>0.0282598100602627</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 2 -1.</_>
|
|
<_>
|
|
17 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1812430825084448e-004</threshold>
|
|
<left_val>0.1126312986016274</left_val>
|
|
<right_val>-0.1561287045478821</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 3 2 -1.</_>
|
|
<_>
|
|
4 0 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0142690502107143</threshold>
|
|
<left_val>-0.2204768061637878</left_val>
|
|
<right_val>0.0639629736542702</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 1 2 4 -1.</_>
|
|
<_>
|
|
13 1 1 2 2.</_>
|
|
<_>
|
|
12 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0410973504185677</threshold>
|
|
<left_val>-0.0144041404128075</left_val>
|
|
<right_val>0.4511365890502930</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 1 2 4 -1.</_>
|
|
<_>
|
|
8 1 1 2 2.</_>
|
|
<_>
|
|
9 3 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0341849811375141</threshold>
|
|
<left_val>-0.0239439606666565</left_val>
|
|
<right_val>0.5334662199020386</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 4 2 -1.</_>
|
|
<_>
|
|
15 0 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0550987198948860</threshold>
|
|
<left_val>-0.4417823851108551</left_val>
|
|
<right_val>0.0144759602844715</right_val></_></_>
|
|
<_>
|
|
<!-- tree 68 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 2 2 -1.</_>
|
|
<_>
|
|
10 0 1 1 2.</_>
|
|
<_>
|
|
11 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0154654402285814</threshold>
|
|
<left_val>0.0182211305946112</left_val>
|
|
<right_val>-0.6235563755035400</right_val></_></_>
|
|
<_>
|
|
<!-- tree 69 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 2 2 -1.</_>
|
|
<_>
|
|
16 1 1 1 2.</_>
|
|
<_>
|
|
15 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.3496570326387882e-003</threshold>
|
|
<left_val>-0.1382047981023789</left_val>
|
|
<right_val>0.2178387939929962</right_val></_></_>
|
|
<_>
|
|
<!-- tree 70 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 1 8 2 -1.</_>
|
|
<_>
|
|
7 1 4 1 2.</_>
|
|
<_>
|
|
11 2 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0499045215547085</threshold>
|
|
<left_val>0.0274669490754604</left_val>
|
|
<right_val>-0.5273222923278809</right_val></_></_>
|
|
<_>
|
|
<!-- tree 71 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 9 3 -1.</_>
|
|
<_>
|
|
12 3 3 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.5729550123214722</threshold>
|
|
<left_val>-0.8296223282814026</left_val>
|
|
<right_val>5.5375328520312905e-004</right_val></_></_>
|
|
<_>
|
|
<!-- tree 72 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 9 3 -1.</_>
|
|
<_>
|
|
7 3 3 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0248066000640392</threshold>
|
|
<left_val>0.1025058031082153</left_val>
|
|
<right_val>-0.1492258012294769</right_val></_></_>
|
|
<_>
|
|
<!-- tree 73 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 2 2 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_>
|
|
<_>
|
|
19 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.6801443248987198e-003</threshold>
|
|
<left_val>-0.0758099332451820</left_val>
|
|
<right_val>0.2366416007280350</right_val></_></_>
|
|
<_>
|
|
<!-- tree 74 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 1 2 -1.</_>
|
|
<_>
|
|
9 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0426608510315418</threshold>
|
|
<left_val>-0.4847196936607361</left_val>
|
|
<right_val>0.0303105395287275</right_val></_></_>
|
|
<_>
|
|
<!-- tree 75 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 8 3 -1.</_>
|
|
<_>
|
|
7 2 4 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2783867120742798</threshold>
|
|
<left_val>-0.0308529809117317</left_val>
|
|
<right_val>0.4881013929843903</right_val></_></_>
|
|
<_>
|
|
<!-- tree 76 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 3 1 -1.</_>
|
|
<_>
|
|
5 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0108723295852542</threshold>
|
|
<left_val>-0.2787505090236664</left_val>
|
|
<right_val>0.0469719097018242</right_val></_></_>
|
|
<_>
|
|
<!-- tree 77 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 4 3 1 -1.</_>
|
|
<_>
|
|
14 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8905799263156950e-004</threshold>
|
|
<left_val>-0.0977130830287933</left_val>
|
|
<right_val>0.1045359000563622</right_val></_></_>
|
|
<_>
|
|
<!-- tree 78 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 2 2 -1.</_>
|
|
<_>
|
|
1 2 1 1 2.</_>
|
|
<_>
|
|
2 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.3399498835206032e-003</threshold>
|
|
<left_val>-0.0567897297441959</left_val>
|
|
<right_val>0.2199099957942963</right_val></_></_>
|
|
<_>
|
|
<!-- tree 79 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 2 2 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_>
|
|
<_>
|
|
19 3 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.5025609433650970e-003</threshold>
|
|
<left_val>0.1681939065456390</left_val>
|
|
<right_val>-0.0471827611327171</right_val></_></_>
|
|
<_>
|
|
<!-- tree 80 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 2 2 -1.</_>
|
|
<_>
|
|
1 1 1 1 2.</_>
|
|
<_>
|
|
2 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.1141611337661743e-003</threshold>
|
|
<left_val>-0.0538599304854870</left_val>
|
|
<right_val>0.2494518011808395</right_val></_></_>
|
|
<_>
|
|
<!-- tree 81 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 1 4 -1.</_>
|
|
<_>
|
|
21 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0334822796285152</threshold>
|
|
<left_val>0.0396987795829773</left_val>
|
|
<right_val>-0.1784003973007202</right_val></_></_>
|
|
<_>
|
|
<!-- tree 82 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 1 4 -1.</_>
|
|
<_>
|
|
0 2 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0168455094099045</threshold>
|
|
<left_val>-0.2692301869392395</left_val>
|
|
<right_val>0.0555524602532387</right_val></_></_>
|
|
<_>
|
|
<!-- tree 83 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 3 1 -1.</_>
|
|
<_>
|
|
15 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.3367617763578892e-003</threshold>
|
|
<left_val>0.0457564890384674</left_val>
|
|
<right_val>-0.2253731936216354</right_val></_></_>
|
|
<_>
|
|
<!-- tree 84 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 16 2 -1.</_>
|
|
<_>
|
|
6 0 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1215948015451431</threshold>
|
|
<left_val>0.6139575839042664</left_val>
|
|
<right_val>-0.0229580700397491</right_val></_></_>
|
|
<_>
|
|
<!-- tree 85 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 3 1 -1.</_>
|
|
<_>
|
|
15 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0186872798949480</threshold>
|
|
<left_val>-0.3642201125621796</left_val>
|
|
<right_val>0.0236557908356190</right_val></_></_>
|
|
<_>
|
|
<!-- tree 86 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 16 2 -1.</_>
|
|
<_>
|
|
11 1 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2913098037242889</threshold>
|
|
<left_val>-0.6291968226432800</left_val>
|
|
<right_val>0.0176620502024889</right_val></_></_>
|
|
<_>
|
|
<!-- tree 87 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 4 3 1 -1.</_>
|
|
<_>
|
|
14 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.0170090030878782e-004</threshold>
|
|
<left_val>0.0790203064680099</left_val>
|
|
<right_val>-0.0738237276673317</right_val></_></_>
|
|
<_>
|
|
<!-- tree 88 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 4 3 1 -1.</_>
|
|
<_>
|
|
7 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.3048979346640408e-004</threshold>
|
|
<left_val>-0.1133956015110016</left_val>
|
|
<right_val>0.1254207938909531</right_val></_></_>
|
|
<_>
|
|
<!-- tree 89 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 2 2 1 -1.</_>
|
|
<_>
|
|
11 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0317746400833130</threshold>
|
|
<left_val>0.0240910202264786</left_val>
|
|
<right_val>-0.2394727021455765</right_val></_></_>
|
|
<_>
|
|
<!-- tree 90 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 4 3 -1.</_>
|
|
<_>
|
|
11 0 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0676887184381485</threshold>
|
|
<left_val>0.2068980932235718</left_val>
|
|
<right_val>-0.0623617693781853</right_val></_></_>
|
|
<_>
|
|
<!-- tree 91 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0397858098149300</threshold>
|
|
<left_val>0.0135105196386576</left_val>
|
|
<right_val>-0.6386339068412781</right_val></_></_>
|
|
<_>
|
|
<!-- tree 92 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 2 1 -1.</_>
|
|
<_>
|
|
8 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0200208593159914</threshold>
|
|
<left_val>-0.1968978047370911</left_val>
|
|
<right_val>0.0677288100123405</right_val></_></_>
|
|
<_>
|
|
<!-- tree 93 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 1 2 2 -1.</_>
|
|
<_>
|
|
12 1 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0945090875029564</threshold>
|
|
<left_val>0.0180175509303808</left_val>
|
|
<right_val>-0.6440523862838745</right_val></_></_>
|
|
<_>
|
|
<!-- tree 94 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 3 2 2 -1.</_>
|
|
<_>
|
|
9 3 1 1 2.</_>
|
|
<_>
|
|
10 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.2699890695512295e-003</threshold>
|
|
<left_val>0.0314390510320663</left_val>
|
|
<right_val>-0.3640947937965393</right_val></_></_>
|
|
<_>
|
|
<!-- tree 95 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 16 1 -1.</_>
|
|
<_>
|
|
4 2 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1304758042097092</threshold>
|
|
<left_val>-0.5485221147537231</left_val>
|
|
<right_val>5.9488588012754917e-003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 96 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 2 1 -1.</_>
|
|
<_>
|
|
4 0 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7846038574352860e-004</threshold>
|
|
<left_val>0.0861910805106163</left_val>
|
|
<right_val>-0.1290287971496582</right_val></_></_>
|
|
<_>
|
|
<!-- tree 97 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 8 5 -1.</_>
|
|
<_>
|
|
14 0 4 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2183739989995956</threshold>
|
|
<left_val>0.1289092004299164</left_val>
|
|
<right_val>-0.0562122501432896</right_val></_></_>
|
|
<_>
|
|
<!-- tree 98 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 8 5 -1.</_>
|
|
<_>
|
|
4 0 4 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1850591003894806</threshold>
|
|
<left_val>-0.0471936501562595</left_val>
|
|
<right_val>0.2954468131065369</right_val></_></_>
|
|
<_>
|
|
<!-- tree 99 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 2 2 -1.</_>
|
|
<_>
|
|
16 1 1 1 2.</_>
|
|
<_>
|
|
15 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0166506506502628</threshold>
|
|
<left_val>-0.0225153602659702</left_val>
|
|
<right_val>0.1783117949962616</right_val></_></_>
|
|
<_>
|
|
<!-- tree 100 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 3 2 -1.</_>
|
|
<_>
|
|
7 1 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3978849640116096e-004</threshold>
|
|
<left_val>0.0790100768208504</left_val>
|
|
<right_val>-0.1559263020753861</right_val></_></_>
|
|
<_>
|
|
<!-- tree 101 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 3 3 -1.</_>
|
|
<_>
|
|
16 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0583770088851452</threshold>
|
|
<left_val>-0.0246948692947626</left_val>
|
|
<right_val>0.3055580854415894</right_val></_></_>
|
|
<_>
|
|
<!-- tree 102 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 3 3 -1.</_>
|
|
<_>
|
|
5 2 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0584596507251263</threshold>
|
|
<left_val>0.1479811966419220</left_val>
|
|
<right_val>-0.0893782526254654</right_val></_></_>
|
|
<_>
|
|
<!-- tree 103 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 2 3 -1.</_>
|
|
<_>
|
|
16 1 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0185263492166996</threshold>
|
|
<left_val>0.0921296998858452</left_val>
|
|
<right_val>-0.0897432565689087</right_val></_></_>
|
|
<_>
|
|
<!-- tree 104 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 6 1 -1.</_>
|
|
<_>
|
|
11 2 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0854168683290482</threshold>
|
|
<left_val>-0.0263978093862534</left_val>
|
|
<right_val>0.4890831112861633</right_val></_></_>
|
|
<_>
|
|
<!-- tree 105 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 12 2 -1.</_>
|
|
<_>
|
|
13 0 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1266379952430725</threshold>
|
|
<left_val>0.0472919195890427</left_val>
|
|
<right_val>-0.0673991292715073</right_val></_></_>
|
|
<_>
|
|
<!-- tree 106 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 22 3 -1.</_>
|
|
<_>
|
|
11 2 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1949647068977356</threshold>
|
|
<left_val>0.2069161981344223</left_val>
|
|
<right_val>-0.0614933893084526</right_val></_></_>
|
|
<_>
|
|
<!-- tree 107 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 2 1 -1.</_>
|
|
<_>
|
|
15 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0120370900258422</threshold>
|
|
<left_val>0.0294632297009230</left_val>
|
|
<right_val>-0.6021323800086975</right_val></_></_>
|
|
<_>
|
|
<!-- tree 108 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 3 3 -1.</_>
|
|
<_>
|
|
1 0 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7944779139943421e-004</threshold>
|
|
<left_val>0.0810977965593338</left_val>
|
|
<right_val>-0.1374575942754746</right_val></_></_>
|
|
<_>
|
|
<!-- tree 109 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 6 2 -1.</_>
|
|
<_>
|
|
17 1 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.7354073077440262e-003</threshold>
|
|
<left_val>0.0417893193662167</left_val>
|
|
<right_val>-0.1630245000123978</right_val></_></_>
|
|
<_>
|
|
<!-- tree 110 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 4 5 -1.</_>
|
|
<_>
|
|
10 0 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0743067711591721</threshold>
|
|
<left_val>-0.1493885070085526</left_val>
|
|
<right_val>0.0783251002430916</right_val></_></_>
|
|
<_>
|
|
<!-- tree 111 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 3 4 1 -1.</_>
|
|
<_>
|
|
12 3 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0144710596650839</threshold>
|
|
<left_val>-0.0261145904660225</left_val>
|
|
<right_val>0.1420436054468155</right_val></_></_>
|
|
<_>
|
|
<!-- tree 112 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 4 1 -1.</_>
|
|
<_>
|
|
8 3 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0118553396314383</threshold>
|
|
<left_val>-0.0516728907823563</left_val>
|
|
<right_val>0.2699764072895050</right_val></_></_>
|
|
<_>
|
|
<!-- tree 113 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 2 3 -1.</_>
|
|
<_>
|
|
16 1 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0213465392589569</threshold>
|
|
<left_val>-0.0338661484420300</left_val>
|
|
<right_val>0.2302772998809815</right_val></_></_>
|
|
<_>
|
|
<!-- tree 114 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 2 3 -1.</_>
|
|
<_>
|
|
4 1 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0490451715886593</threshold>
|
|
<left_val>0.2696835994720459</left_val>
|
|
<right_val>-0.0548960007727146</right_val></_></_>
|
|
<_>
|
|
<!-- tree 115 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0358397103846073</threshold>
|
|
<left_val>-0.2992103099822998</left_val>
|
|
<right_val>0.0226319395005703</right_val></_></_>
|
|
<_>
|
|
<!-- tree 116 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 6 1 -1.</_>
|
|
<_>
|
|
3 2 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.8866980574093759e-004</threshold>
|
|
<left_val>0.0606743693351746</left_val>
|
|
<right_val>-0.2074286043643951</right_val></_></_>
|
|
<_>
|
|
<!-- tree 117 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 8 2 -1.</_>
|
|
<_>
|
|
11 0 4 1 2.</_>
|
|
<_>
|
|
7 1 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0311627201735973</threshold>
|
|
<left_val>-0.2476159930229187</left_val>
|
|
<right_val>0.0501967892050743</right_val></_></_>
|
|
<_>
|
|
<!-- tree 118 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 3 1 -1.</_>
|
|
<_>
|
|
10 0 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8370518703013659e-004</threshold>
|
|
<left_val>-0.1959448009729385</left_val>
|
|
<right_val>0.0566197708249092</right_val></_></_>
|
|
<_>
|
|
<!-- tree 119 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 2 2 -1.</_>
|
|
<_>
|
|
12 0 1 1 2.</_>
|
|
<_>
|
|
11 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0496213212609291</threshold>
|
|
<left_val>0.8667588233947754</left_val>
|
|
<right_val>-3.4514570143073797e-003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 120 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 2 2 -1.</_>
|
|
<_>
|
|
9 0 1 1 2.</_>
|
|
<_>
|
|
10 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5349689531140029e-004</threshold>
|
|
<left_val>-0.1387840062379837</left_val>
|
|
<right_val>0.0827796980738640</right_val></_></_>
|
|
<_>
|
|
<!-- tree 121 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 3 3 -1.</_>
|
|
<_>
|
|
11 1 1 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0579679794609547</threshold>
|
|
<left_val>-0.0396481305360794</left_val>
|
|
<right_val>0.1881846934556961</right_val></_></_>
|
|
<_>
|
|
<!-- tree 122 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 3 5 2 -1.</_>
|
|
<_>
|
|
4 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0185546502470970</threshold>
|
|
<left_val>-0.1919265985488892</left_val>
|
|
<right_val>0.0630793720483780</right_val></_></_>
|
|
<_>
|
|
<!-- tree 123 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0196151006966829</threshold>
|
|
<left_val>0.0190081596374512</left_val>
|
|
<right_val>-0.1907673031091690</right_val></_></_>
|
|
<_>
|
|
<!-- tree 124 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 1 2 -1.</_>
|
|
<_>
|
|
8 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0334483496844769</threshold>
|
|
<left_val>-0.2958706915378571</left_val>
|
|
<right_val>0.0443617105484009</right_val></_></_>
|
|
<_>
|
|
<!-- tree 125 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 2 2 -1.</_>
|
|
<_>
|
|
15 1 1 1 2.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.5647640042006969e-003</threshold>
|
|
<left_val>0.2529521882534027</left_val>
|
|
<right_val>-0.1090489998459816</right_val></_></_>
|
|
<_>
|
|
<!-- tree 126 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 3 4 -1.</_>
|
|
<_>
|
|
10 1 1 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0180390607565641</threshold>
|
|
<left_val>0.2877208888530731</left_val>
|
|
<right_val>-0.0384894199669361</right_val></_></_>
|
|
<_>
|
|
<!-- tree 127 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 3 1 -1.</_>
|
|
<_>
|
|
16 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.9565680122468621e-004</threshold>
|
|
<left_val>0.0949289873242378</left_val>
|
|
<right_val>-0.1012921035289764</right_val></_></_>
|
|
<_>
|
|
<!-- tree 128 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 3 1 -1.</_>
|
|
<_>
|
|
5 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0203926190733910</threshold>
|
|
<left_val>-0.8009325861930847</left_val>
|
|
<right_val>0.0130648696795106</right_val></_></_>
|
|
<_>
|
|
<!-- tree 129 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 12 2 -1.</_>
|
|
<_>
|
|
14 0 6 1 2.</_>
|
|
<_>
|
|
8 1 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0903669223189354</threshold>
|
|
<left_val>0.3940427005290985</left_val>
|
|
<right_val>-0.0190852805972099</right_val></_></_>
|
|
<_>
|
|
<!-- tree 130 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 3 3 -1.</_>
|
|
<_>
|
|
8 1 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1523697972297669</threshold>
|
|
<left_val>-0.6418926715850830</left_val>
|
|
<right_val>0.0175207499414682</right_val></_></_>
|
|
<_>
|
|
<!-- tree 131 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 2 1 2 -1.</_>
|
|
<_>
|
|
13 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0771427676081657</threshold>
|
|
<left_val>0.3086620867252350</left_val>
|
|
<right_val>-0.0145021099597216</right_val></_></_>
|
|
<_>
|
|
<!-- tree 132 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 3 1 -1.</_>
|
|
<_>
|
|
4 4 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.8981278240680695e-003</threshold>
|
|
<left_val>-0.3348196148872376</left_val>
|
|
<right_val>0.0308049898594618</right_val></_></_></trees>
|
|
<stage_threshold>-1.4611779451370239</stage_threshold>
|
|
<parent>15</parent>
|
|
<next>-1</next></_></stages></parojos>
|
|
</opencv_storage>
|