mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
184 lines
7.9 KiB
C++
184 lines
7.9 KiB
C++
#include <opencv2/opencv.hpp>
|
|
#include <vector>
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
static void help()
|
|
{
|
|
cout << "\n This program demonstrates how to detect compute and match ORB BRISK and AKAZE descriptors \n"
|
|
"Usage: \n"
|
|
" ./matchmethod_orb_akaze_brisk --image1=<image1(../data/basketball1.png as default)> --image2=<image2(../data/basketball2.png as default)>\n"
|
|
"Press a key when image window is active to change algorithm or descriptor";
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
vector<String> typeDesc;
|
|
vector<String> typeAlgoMatch;
|
|
vector<String> fileName;
|
|
// This descriptor are going to be detect and compute
|
|
typeDesc.push_back("AKAZE-DESCRIPTOR_KAZE_UPRIGHT"); // see http://docs.opencv.org/trunk/d8/d30/classcv_1_1AKAZE.html
|
|
typeDesc.push_back("AKAZE"); // see http://docs.opencv.org/trunk/d8/d30/classcv_1_1AKAZE.html
|
|
typeDesc.push_back("ORB"); // see http://docs.opencv.org/trunk/de/dbf/classcv_1_1BRISK.html
|
|
typeDesc.push_back("BRISK"); // see http://docs.opencv.org/trunk/db/d95/classcv_1_1ORB.html
|
|
// This algorithm would be used to match descriptors see http://docs.opencv.org/trunk/db/d39/classcv_1_1DescriptorMatcher.html#ab5dc5036569ecc8d47565007fa518257
|
|
typeAlgoMatch.push_back("BruteForce");
|
|
typeAlgoMatch.push_back("BruteForce-L1");
|
|
typeAlgoMatch.push_back("BruteForce-Hamming");
|
|
typeAlgoMatch.push_back("BruteForce-Hamming(2)");
|
|
cv::CommandLineParser parser(argc, argv,
|
|
"{ @image1 | ../data/basketball1.png | }"
|
|
"{ @image2 | ../data/basketball2.png | }"
|
|
"{help h ||}");
|
|
if (parser.has("help"))
|
|
{
|
|
help();
|
|
return 0;
|
|
}
|
|
fileName.push_back(parser.get<string>(0));
|
|
fileName.push_back(parser.get<string>(1));
|
|
Mat img1 = imread(fileName[0], IMREAD_GRAYSCALE);
|
|
Mat img2 = imread(fileName[1], IMREAD_GRAYSCALE);
|
|
if (img1.rows*img1.cols <= 0)
|
|
{
|
|
cout << "Image " << fileName[0] << " is empty or cannot be found\n";
|
|
return(0);
|
|
}
|
|
if (img2.rows*img2.cols <= 0)
|
|
{
|
|
cout << "Image " << fileName[1] << " is empty or cannot be found\n";
|
|
return(0);
|
|
}
|
|
|
|
vector<double> desMethCmp;
|
|
Ptr<Feature2D> b;
|
|
|
|
// Descriptor loop
|
|
vector<String>::iterator itDesc;
|
|
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++)
|
|
{
|
|
Ptr<DescriptorMatcher> descriptorMatcher;
|
|
// Match between img1 and img2
|
|
vector<DMatch> matches;
|
|
// keypoint for img1 and img2
|
|
vector<KeyPoint> keyImg1, keyImg2;
|
|
// Descriptor for img1 and img2
|
|
Mat descImg1, descImg2;
|
|
vector<String>::iterator itMatcher = typeAlgoMatch.end();
|
|
if (*itDesc == "AKAZE-DESCRIPTOR_KAZE_UPRIGHT"){
|
|
b = AKAZE::create(AKAZE::DESCRIPTOR_KAZE_UPRIGHT);
|
|
}
|
|
if (*itDesc == "AKAZE"){
|
|
b = AKAZE::create();
|
|
}
|
|
if (*itDesc == "ORB"){
|
|
b = ORB::create();
|
|
}
|
|
else if (*itDesc == "BRISK"){
|
|
b = BRISK::create();
|
|
}
|
|
try
|
|
{
|
|
// We can detect keypoint with detect method
|
|
b->detect(img1, keyImg1, Mat());
|
|
// and compute their descriptors with method compute
|
|
b->compute(img1, keyImg1, descImg1);
|
|
// or detect and compute descriptors in one step
|
|
b->detectAndCompute(img2, Mat(),keyImg2, descImg2,false);
|
|
// Match method loop
|
|
for (itMatcher = typeAlgoMatch.begin(); itMatcher != typeAlgoMatch.end(); itMatcher++){
|
|
descriptorMatcher = DescriptorMatcher::create(*itMatcher);
|
|
if ((*itMatcher == "BruteForce-Hamming" || *itMatcher == "BruteForce-Hamming(2)") && (b->descriptorType() == CV_32F || b->defaultNorm() <= NORM_L2SQR))
|
|
{
|
|
cout << "**************************************************************************\n";
|
|
cout << "It's strange. You should use Hamming distance only for a binary descriptor\n";
|
|
cout << "**************************************************************************\n";
|
|
}
|
|
if ((*itMatcher == "BruteForce" || *itMatcher == "BruteForce-L1") && (b->defaultNorm() >= NORM_HAMMING))
|
|
{
|
|
cout << "**************************************************************************\n";
|
|
cout << "It's strange. You shouldn't use L1 or L2 distance for a binary descriptor\n";
|
|
cout << "**************************************************************************\n";
|
|
}
|
|
try
|
|
{
|
|
descriptorMatcher->match(descImg1, descImg2, matches, Mat());
|
|
// Keep best matches only to have a nice drawing.
|
|
// We sort distance between descriptor matches
|
|
Mat index;
|
|
int nbMatch=int(matches.size());
|
|
Mat tab(nbMatch, 1, CV_32F);
|
|
for (int i = 0; i<nbMatch; i++)
|
|
{
|
|
tab.at<float>(i, 0) = matches[i].distance;
|
|
}
|
|
sortIdx(tab, index, SORT_EVERY_COLUMN + SORT_ASCENDING);
|
|
vector<DMatch> bestMatches;
|
|
for (int i = 0; i<30; i++)
|
|
{
|
|
bestMatches.push_back(matches[index.at<int>(i, 0)]);
|
|
}
|
|
Mat result;
|
|
drawMatches(img1, keyImg1, img2, keyImg2, bestMatches, result);
|
|
namedWindow(*itDesc+": "+*itMatcher, WINDOW_AUTOSIZE);
|
|
imshow(*itDesc + ": " + *itMatcher, result);
|
|
// Saved result could be wrong due to bug 4308
|
|
FileStorage fs(*itDesc + "_" + *itMatcher + ".yml", FileStorage::WRITE);
|
|
fs<<"Matches"<<matches;
|
|
vector<DMatch>::iterator it;
|
|
cout<<"**********Match results**********\n";
|
|
cout << "Index \tIndex \tdistance\n";
|
|
cout << "in img1\tin img2\n";
|
|
// Use to compute distance between keyPoint matches and to evaluate match algorithm
|
|
double cumSumDist2=0;
|
|
for (it = bestMatches.begin(); it != bestMatches.end(); it++)
|
|
{
|
|
cout << it->queryIdx << "\t" << it->trainIdx << "\t" << it->distance << "\n";
|
|
Point2d p=keyImg1[it->queryIdx].pt-keyImg2[it->trainIdx].pt;
|
|
cumSumDist2=p.x*p.x+p.y*p.y;
|
|
}
|
|
desMethCmp.push_back(cumSumDist2);
|
|
waitKey();
|
|
}
|
|
catch (Exception& e)
|
|
{
|
|
cout << e.msg << endl;
|
|
cout << "Cumulative distance cannot be computed." << endl;
|
|
desMethCmp.push_back(-1);
|
|
}
|
|
}
|
|
}
|
|
catch (Exception& e)
|
|
{
|
|
cout << "Feature : " << *itDesc << "\n";
|
|
if (itMatcher != typeAlgoMatch.end())
|
|
{
|
|
cout << "Matcher : " << *itMatcher << "\n";
|
|
}
|
|
cout << e.msg << endl;
|
|
}
|
|
}
|
|
int i=0;
|
|
cout << "Cumulative distance between keypoint match for different algorithm and feature detector \n\t";
|
|
cout << "We cannot say which is the best but we can say results are differents! \n\t";
|
|
for (vector<String>::iterator itMatcher = typeAlgoMatch.begin(); itMatcher != typeAlgoMatch.end(); itMatcher++)
|
|
{
|
|
cout<<*itMatcher<<"\t";
|
|
}
|
|
cout << "\n";
|
|
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++)
|
|
{
|
|
cout << *itDesc << "\t";
|
|
for (vector<String>::iterator itMatcher = typeAlgoMatch.begin(); itMatcher != typeAlgoMatch.end(); itMatcher++, i++)
|
|
{
|
|
cout << desMethCmp[i]<<"\t";
|
|
}
|
|
cout<<"\n";
|
|
}
|
|
return 0;
|
|
}
|