opencv/modules/gpubgsegm/doc/background_segmentation.rst
Roman Donchenko 6b5ac42a9b Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts:
	modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst
	modules/features2d/doc/common_interfaces_of_descriptor_extractors.rst
	modules/features2d/doc/object_categorization.rst
	modules/gpu/doc/camera_calibration_and_3d_reconstruction.rst
	modules/gpu/doc/image_filtering.rst
	modules/gpu/doc/image_processing.rst
	modules/gpu/doc/video.rst
	modules/imgproc/doc/miscellaneous_transformations.rst
	modules/imgproc/doc/object_detection.rst
	modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst
	modules/imgproc/src/samplers.cpp
	modules/ml/doc/k_nearest_neighbors.rst
	modules/nonfree/doc/feature_detection.rst
	modules/ocl/include/opencv2/ocl/ocl.hpp
	modules/photo/doc/inpainting.rst
	modules/ts/include/opencv2/ts.hpp
	platforms/scripts/camera_build.conf
	samples/android/camera-calibration/AndroidManifest.xml
2013-08-13 12:56:39 +04:00

128 lines
5.3 KiB
ReStructuredText

Background Segmentation
=======================
.. highlight:: cpp
gpu::BackgroundSubtractorMOG
----------------------------
Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
.. ocv:class:: gpu::BackgroundSubtractorMOG : public cv::BackgroundSubtractorMOG
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2001]_.
.. seealso:: :ocv:class:`BackgroundSubtractorMOG`
.. note::
* An example on gaussian mixture based background/foreground segmantation can be found at opencv_source_code/samples/gpu/bgfg_segm.cpp
gpu::createBackgroundSubtractorMOG
----------------------------------
Creates mixture-of-gaussian background subtractor
.. ocv:function:: Ptr<gpu::BackgroundSubtractorMOG> gpu::createBackgroundSubtractorMOG(int history=200, int nmixtures=5, double backgroundRatio=0.7, double noiseSigma=0)
:param history: Length of the history.
:param nmixtures: Number of Gaussian mixtures.
:param backgroundRatio: Background ratio.
:param noiseSigma: Noise strength (standard deviation of the brightness or each color channel). 0 means some automatic value.
gpu::BackgroundSubtractorMOG2
-----------------------------
Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
.. ocv:class:: gpu::BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2004]_.
.. seealso:: :ocv:class:`BackgroundSubtractorMOG2`
gpu::createBackgroundSubtractorMOG2
-----------------------------------
Creates MOG2 Background Subtractor
.. ocv:function:: Ptr<gpu::BackgroundSubtractorMOG2> gpu::createBackgroundSubtractorMOG2( int history=500, double varThreshold=16, bool detectShadows=true )
:param history: Length of the history.
:param varThreshold: Threshold on the squared Mahalanobis distance between the pixel and the model to decide whether a pixel is well described by the background model. This parameter does not affect the background update.
:param detectShadows: If true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false.
gpu::BackgroundSubtractorGMG
----------------------------
Background/Foreground Segmentation Algorithm.
.. ocv:class:: gpu::BackgroundSubtractorGMG : public cv::BackgroundSubtractorGMG
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [GMG2012]_.
gpu::createBackgroundSubtractorGMG
----------------------------------
Creates GMG Background Subtractor
.. ocv:function:: Ptr<gpu::BackgroundSubtractorGMG> gpu::createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8)
:param initializationFrames: Number of frames of video to use to initialize histograms.
:param decisionThreshold: Value above which pixel is determined to be FG.
gpu::BackgroundSubtractorFGD
----------------------------
.. ocv:class:: gpu::BackgroundSubtractorFGD : public cv::BackgroundSubtractor
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [FGD2003]_. ::
class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor
{
public:
virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0;
};
.. seealso:: :ocv:class:`BackgroundSubtractor`
gpu::BackgroundSubtractorFGD::getForegroundRegions
--------------------------------------------------
Returns the output foreground regions calculated by :ocv:func:`findContours`.
.. ocv:function:: void gpu::BackgroundSubtractorFGD::getForegroundRegions(OutputArrayOfArrays foreground_regions)
:params foreground_regions: Output array (CPU memory).
gpu::createBackgroundSubtractorFGD
----------------------------------
Creates FGD Background Subtractor
.. ocv:function:: Ptr<gpu::BackgroundSubtractorGMG> gpu::createBackgroundSubtractorFGD(const FGDParams& params = FGDParams())
:param params: Algorithm's parameters. See [FGD2003]_ for explanation.
.. [FGD2003] Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. *Foreground Object Detection from Videos Containing Complex Background*. ACM MM2003 9p, 2003.
.. [MOG2001] P. KadewTraKuPong and R. Bowden. *An improved adaptive background mixture model for real-time tracking with shadow detection*. Proc. 2nd European Workshop on Advanced Video-Based Surveillance Systems, 2001
.. [MOG2004] Z. Zivkovic. *Improved adaptive Gausian mixture model for background subtraction*. International Conference Pattern Recognition, UK, August, 2004
.. [GMG2012] A. Godbehere, A. Matsukawa and K. Goldberg. *Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation*. American Control Conference, Montreal, June 2012