mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 22:00:25 +08:00
6b5ac42a9b
Conflicts: modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst modules/features2d/doc/common_interfaces_of_descriptor_extractors.rst modules/features2d/doc/object_categorization.rst modules/gpu/doc/camera_calibration_and_3d_reconstruction.rst modules/gpu/doc/image_filtering.rst modules/gpu/doc/image_processing.rst modules/gpu/doc/video.rst modules/imgproc/doc/miscellaneous_transformations.rst modules/imgproc/doc/object_detection.rst modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst modules/imgproc/src/samplers.cpp modules/ml/doc/k_nearest_neighbors.rst modules/nonfree/doc/feature_detection.rst modules/ocl/include/opencv2/ocl/ocl.hpp modules/photo/doc/inpainting.rst modules/ts/include/opencv2/ts.hpp platforms/scripts/camera_build.conf samples/android/camera-calibration/AndroidManifest.xml
128 lines
5.3 KiB
ReStructuredText
128 lines
5.3 KiB
ReStructuredText
Background Segmentation
|
|
=======================
|
|
|
|
.. highlight:: cpp
|
|
|
|
|
|
|
|
gpu::BackgroundSubtractorMOG
|
|
----------------------------
|
|
Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
|
|
|
|
.. ocv:class:: gpu::BackgroundSubtractorMOG : public cv::BackgroundSubtractorMOG
|
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2001]_.
|
|
|
|
.. seealso:: :ocv:class:`BackgroundSubtractorMOG`
|
|
|
|
.. note::
|
|
|
|
* An example on gaussian mixture based background/foreground segmantation can be found at opencv_source_code/samples/gpu/bgfg_segm.cpp
|
|
|
|
|
|
gpu::createBackgroundSubtractorMOG
|
|
----------------------------------
|
|
Creates mixture-of-gaussian background subtractor
|
|
|
|
.. ocv:function:: Ptr<gpu::BackgroundSubtractorMOG> gpu::createBackgroundSubtractorMOG(int history=200, int nmixtures=5, double backgroundRatio=0.7, double noiseSigma=0)
|
|
|
|
:param history: Length of the history.
|
|
|
|
:param nmixtures: Number of Gaussian mixtures.
|
|
|
|
:param backgroundRatio: Background ratio.
|
|
|
|
:param noiseSigma: Noise strength (standard deviation of the brightness or each color channel). 0 means some automatic value.
|
|
|
|
|
|
|
|
gpu::BackgroundSubtractorMOG2
|
|
-----------------------------
|
|
Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
|
|
|
|
.. ocv:class:: gpu::BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2
|
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2004]_.
|
|
|
|
.. seealso:: :ocv:class:`BackgroundSubtractorMOG2`
|
|
|
|
|
|
|
|
gpu::createBackgroundSubtractorMOG2
|
|
-----------------------------------
|
|
Creates MOG2 Background Subtractor
|
|
|
|
.. ocv:function:: Ptr<gpu::BackgroundSubtractorMOG2> gpu::createBackgroundSubtractorMOG2( int history=500, double varThreshold=16, bool detectShadows=true )
|
|
|
|
:param history: Length of the history.
|
|
|
|
:param varThreshold: Threshold on the squared Mahalanobis distance between the pixel and the model to decide whether a pixel is well described by the background model. This parameter does not affect the background update.
|
|
|
|
:param detectShadows: If true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false.
|
|
|
|
|
|
|
|
gpu::BackgroundSubtractorGMG
|
|
----------------------------
|
|
Background/Foreground Segmentation Algorithm.
|
|
|
|
.. ocv:class:: gpu::BackgroundSubtractorGMG : public cv::BackgroundSubtractorGMG
|
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [GMG2012]_.
|
|
|
|
|
|
|
|
gpu::createBackgroundSubtractorGMG
|
|
----------------------------------
|
|
Creates GMG Background Subtractor
|
|
|
|
.. ocv:function:: Ptr<gpu::BackgroundSubtractorGMG> gpu::createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8)
|
|
|
|
:param initializationFrames: Number of frames of video to use to initialize histograms.
|
|
|
|
:param decisionThreshold: Value above which pixel is determined to be FG.
|
|
|
|
|
|
|
|
gpu::BackgroundSubtractorFGD
|
|
----------------------------
|
|
|
|
.. ocv:class:: gpu::BackgroundSubtractorFGD : public cv::BackgroundSubtractor
|
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [FGD2003]_. ::
|
|
|
|
class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor
|
|
{
|
|
public:
|
|
virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0;
|
|
};
|
|
|
|
.. seealso:: :ocv:class:`BackgroundSubtractor`
|
|
|
|
|
|
|
|
gpu::BackgroundSubtractorFGD::getForegroundRegions
|
|
--------------------------------------------------
|
|
Returns the output foreground regions calculated by :ocv:func:`findContours`.
|
|
|
|
.. ocv:function:: void gpu::BackgroundSubtractorFGD::getForegroundRegions(OutputArrayOfArrays foreground_regions)
|
|
|
|
:params foreground_regions: Output array (CPU memory).
|
|
|
|
|
|
|
|
gpu::createBackgroundSubtractorFGD
|
|
----------------------------------
|
|
Creates FGD Background Subtractor
|
|
|
|
.. ocv:function:: Ptr<gpu::BackgroundSubtractorGMG> gpu::createBackgroundSubtractorFGD(const FGDParams& params = FGDParams())
|
|
|
|
:param params: Algorithm's parameters. See [FGD2003]_ for explanation.
|
|
|
|
|
|
|
|
.. [FGD2003] Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. *Foreground Object Detection from Videos Containing Complex Background*. ACM MM2003 9p, 2003.
|
|
.. [MOG2001] P. KadewTraKuPong and R. Bowden. *An improved adaptive background mixture model for real-time tracking with shadow detection*. Proc. 2nd European Workshop on Advanced Video-Based Surveillance Systems, 2001
|
|
.. [MOG2004] Z. Zivkovic. *Improved adaptive Gausian mixture model for background subtraction*. International Conference Pattern Recognition, UK, August, 2004
|
|
.. [GMG2012] A. Godbehere, A. Matsukawa and K. Goldberg. *Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation*. American Control Conference, Montreal, June 2012
|