mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 17:43:12 +08:00
fe9ff64d64
* Add a FLANN example showing how to search a query image in a dataset * Clean: remove warning * Replace dependency to boost::filesystem by calls to core/utils/filesystem * Wait for escape key to exit * Add an example of binary descriptors support * Add program options for saving and loading the flann structure * Fix warnings on Win64 * Fix warnings on 3.4 branch still relying on C++03 * Add ctor to img_info structure * Comments modification * * Demo file of FLANN moved and renamed * Fix distances type when using binary vectors in the FLANN example * Rename FLANN example file * Remove dependency of the flann example to opencv_contrib's SURF. * Remove mention of FLANN and other descriptors that aimed at giving hint on the other options * Cleaner program options management * Make waitKey usage minimal in FLANN example * Fix the conditions order * Use cv::Ptr
251 lines
9.1 KiB
C++
251 lines
9.1 KiB
C++
// flann_search_dataset.cpp
|
|
// Naive program to search a query picture in a dataset illustrating usage of FLANN
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/core/utils/filesystem.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/features2d.hpp"
|
|
#include "opencv2/flann.hpp"
|
|
|
|
using namespace cv;
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
#define _ORB_
|
|
|
|
const char* keys =
|
|
"{ help h | | Print help message. }"
|
|
"{ dataset | | Path to the images folder used as dataset. }"
|
|
"{ image | | Path to the image to search for in the dataset. }"
|
|
"{ save | | Path and filename where to save the flann structure to. }"
|
|
"{ load | | Path and filename where to load the flann structure from. }";
|
|
|
|
struct img_info {
|
|
int img_index;
|
|
unsigned int nbr_of_matches;
|
|
|
|
img_info(int _img_index, unsigned int _nbr_of_matches)
|
|
: img_index(_img_index)
|
|
, nbr_of_matches(_nbr_of_matches)
|
|
{}
|
|
};
|
|
|
|
|
|
int main( int argc, char* argv[] )
|
|
{
|
|
//-- Test the program options
|
|
CommandLineParser parser( argc, argv, keys );
|
|
if (parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return -1;
|
|
}
|
|
|
|
const cv::String img_path = parser.get<String>("image");
|
|
Mat img = imread( samples::findFile( img_path ), IMREAD_GRAYSCALE );
|
|
if (img.empty() )
|
|
{
|
|
cout << "Could not open the image "<< img_path << endl;
|
|
return -1;
|
|
}
|
|
|
|
const cv::String db_path = parser.get<String>("dataset");
|
|
if (!utils::fs::isDirectory(db_path))
|
|
{
|
|
cout << "Dataset folder "<< db_path.c_str() <<" doesn't exist!" << endl;
|
|
return -1;
|
|
}
|
|
|
|
const cv::String load_db_path = parser.get<String>("load");
|
|
if ((load_db_path != String()) && (!utils::fs::exists(load_db_path)))
|
|
{
|
|
cout << "File " << load_db_path.c_str()
|
|
<< " where to load the flann structure from doesn't exist!" << endl;
|
|
return -1;
|
|
}
|
|
|
|
const cv::String save_db_path = parser.get<String>("save");
|
|
|
|
//-- Step 1: Detect the keypoints using a detector, compute the descriptors
|
|
// in the folder containing the images of the dataset
|
|
#ifdef _SIFT_
|
|
int minHessian = 400;
|
|
Ptr<Feature2D> detector = SIFT::create( minHessian );
|
|
#elif defined(_ORB_)
|
|
Ptr<Feature2D> detector = ORB::create();
|
|
#else
|
|
cout << "Missing or unknown defined descriptor. "
|
|
"Only SIFT and ORB are currently interfaced here" << endl;
|
|
return -1;
|
|
#endif
|
|
|
|
std::vector<KeyPoint> db_keypoints;
|
|
Mat db_descriptors;
|
|
std::vector<unsigned int> db_images_indice_range; //store the range of indices per image
|
|
std::vector<int> db_indice_2_image_lut; //match descriptor indice to its image
|
|
|
|
db_images_indice_range.push_back(0);
|
|
std::vector<cv::String> files;
|
|
utils::fs::glob(db_path, cv::String(), files);
|
|
for (std::vector<cv::String>::iterator itr = files.begin(); itr != files.end(); ++itr)
|
|
{
|
|
Mat tmp_img = imread( *itr, IMREAD_GRAYSCALE );
|
|
if (!tmp_img.empty())
|
|
{
|
|
std::vector<KeyPoint> kpts;
|
|
Mat descriptors;
|
|
detector->detectAndCompute( tmp_img, noArray(), kpts, descriptors );
|
|
|
|
db_keypoints.insert( db_keypoints.end(), kpts.begin(), kpts.end() );
|
|
db_descriptors.push_back( descriptors );
|
|
db_images_indice_range.push_back( db_images_indice_range.back()
|
|
+ static_cast<unsigned int>(kpts.size()) );
|
|
}
|
|
}
|
|
|
|
//-- Set the LUT
|
|
db_indice_2_image_lut.resize( db_images_indice_range.back() );
|
|
const int nbr_of_imgs = static_cast<int>( db_images_indice_range.size()-1 );
|
|
for (int i = 0; i < nbr_of_imgs; ++i)
|
|
{
|
|
const unsigned int first_indice = db_images_indice_range[i];
|
|
const unsigned int last_indice = db_images_indice_range[i+1];
|
|
std::fill( db_indice_2_image_lut.begin() + first_indice,
|
|
db_indice_2_image_lut.begin() + last_indice,
|
|
i );
|
|
}
|
|
|
|
//-- Step 2: build the structure storing the descriptors
|
|
#if defined(_SIFT_)
|
|
cv::Ptr<flann::GenericIndex<cvflann::L2<float> > > index;
|
|
if (load_db_path != String())
|
|
index = cv::makePtr<flann::GenericIndex<cvflann::L2<float> > >(db_descriptors,
|
|
cvflann::SavedIndexParams(load_db_path));
|
|
else
|
|
index = cv::makePtr<flann::GenericIndex<cvflann::L2<float> > >(db_descriptors,
|
|
cvflann::KDTreeIndexParams(4));
|
|
|
|
#elif defined(_ORB_)
|
|
cv::Ptr<flann::GenericIndex<cvflann::Hamming<unsigned char> > > index;
|
|
if (load_db_path != String())
|
|
index = cv::makePtr<flann::GenericIndex<cvflann::Hamming<unsigned char> > >
|
|
(db_descriptors, cvflann::SavedIndexParams(load_db_path));
|
|
else
|
|
index = cv::makePtr<flann::GenericIndex<cvflann::Hamming<unsigned char> > >
|
|
(db_descriptors, cvflann::LshIndexParams());
|
|
#else
|
|
cout<< "Descriptor not listed. Set the proper FLANN distance for this descriptor" <<endl;
|
|
return -1;
|
|
#endif
|
|
if (save_db_path != String())
|
|
index->save(save_db_path);
|
|
|
|
|
|
// Return if no query image was set
|
|
if (img_path == String())
|
|
return 0;
|
|
|
|
//-- Detect the keypoints and compute the descriptors for the query image
|
|
std::vector<KeyPoint> img_keypoints;
|
|
Mat img_descriptors;
|
|
detector->detectAndCompute( img, noArray(), img_keypoints, img_descriptors );
|
|
|
|
|
|
//-- Step 3: retrieve the descriptors in the dataset matching the ones of the query image
|
|
// /!\ knnSearch doesn't follow OpenCV standards by not initialising empty Mat properties
|
|
const int knn = 2;
|
|
Mat indices(img_descriptors.rows, knn, CV_32S);
|
|
#if defined(_SIFT_)
|
|
#define DIST_TYPE float
|
|
Mat dists(img_descriptors.rows, knn, CV_32F);
|
|
#elif defined(_ORB_)
|
|
#define DIST_TYPE int
|
|
Mat dists(img_descriptors.rows, knn, CV_32S);
|
|
#endif
|
|
index->knnSearch( img_descriptors, indices, dists, knn, cvflann::SearchParams(32) );
|
|
|
|
//-- Filter matches using the Lowe's ratio test
|
|
const float ratio_thresh = 0.7f;
|
|
std::vector<DMatch> good_matches; //contains
|
|
std::vector<unsigned int> matches_per_img_histogram( nbr_of_imgs, 0 );
|
|
for (int i = 0; i < dists.rows; ++i)
|
|
{
|
|
if (dists.at<DIST_TYPE>(i,0) < ratio_thresh * dists.at<DIST_TYPE>(i,1))
|
|
{
|
|
const int indice_in_db = indices.at<int>(i,0);
|
|
DMatch dmatch(i, indice_in_db, db_indice_2_image_lut[indice_in_db],
|
|
static_cast<float>(dists.at<DIST_TYPE>(i,0)));
|
|
good_matches.push_back( dmatch );
|
|
matches_per_img_histogram[ db_indice_2_image_lut[indice_in_db] ]++;
|
|
}
|
|
}
|
|
|
|
|
|
//-- Step 4: find the dataset image with the highest proportion of matches
|
|
std::multimap<float, img_info> images_infos;
|
|
for (int i = 0; i < nbr_of_imgs; ++i)
|
|
{
|
|
const unsigned int nbr_of_matches = matches_per_img_histogram[i];
|
|
if (nbr_of_matches < 4) //we need at leat 4 points for a homography
|
|
continue;
|
|
|
|
const unsigned int nbr_of_kpts = db_images_indice_range[i+1] - db_images_indice_range[i];
|
|
const float inverse_proportion_of_retrieved_kpts =
|
|
static_cast<float>(nbr_of_kpts) / static_cast<float>(nbr_of_matches);
|
|
|
|
img_info info(i, nbr_of_matches);
|
|
images_infos.insert( std::pair<float,img_info>(inverse_proportion_of_retrieved_kpts,
|
|
info) );
|
|
}
|
|
|
|
if (images_infos.begin() == images_infos.end())
|
|
{
|
|
cout<<"No good match could be found."<<endl;
|
|
return 0;
|
|
}
|
|
|
|
//-- if there are several images with a similar proportion of matches,
|
|
// select the one with the highest number of matches weighted by the
|
|
// squared ratio of proportions
|
|
const float best_matches_proportion = images_infos.begin()->first;
|
|
float new_matches_proportion = best_matches_proportion;
|
|
img_info best_img = images_infos.begin()->second;
|
|
|
|
std::multimap<float, img_info>::iterator it = images_infos.begin();
|
|
++it;
|
|
while ((it!=images_infos.end()) && (it->first < 1.1*best_matches_proportion))
|
|
{
|
|
const float ratio = new_matches_proportion / it->first;
|
|
if( it->second.nbr_of_matches * (ratio * ratio) > best_img.nbr_of_matches)
|
|
{
|
|
new_matches_proportion = it->first;
|
|
best_img = it->second;
|
|
}
|
|
++it;
|
|
}
|
|
|
|
//-- Step 5: filter goodmatches that belong to the best image match of the dataset
|
|
std::vector<DMatch> filtered_good_matches;
|
|
for (std::vector<DMatch>::iterator itr(good_matches.begin()); itr != good_matches.end(); ++itr)
|
|
{
|
|
if (itr->imgIdx == best_img.img_index)
|
|
filtered_good_matches.push_back(*itr);
|
|
}
|
|
|
|
//-- Retrieve the best image match from the dataset
|
|
Mat db_img = imread( files[best_img.img_index], IMREAD_GRAYSCALE );
|
|
|
|
//-- Draw matches
|
|
Mat img_matches;
|
|
drawMatches( img, img_keypoints, db_img, db_keypoints, filtered_good_matches, img_matches, Scalar::all(-1),
|
|
Scalar::all(-1), std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
|
|
|
//-- Show detected matches
|
|
imshow("Good Matches", img_matches );
|
|
waitKey();
|
|
|
|
return 0;
|
|
}
|