mirror of
https://github.com/opencv/opencv.git
synced 2024-12-26 10:48:12 +08:00
5ddd25313f
* Add Grana's connected components algorithm for 8-way connectivity. That algorithm is faster than Wu's one (currently implemented in opencv). For more details see https://github.com/prittt/YACCLAB. * New functions signature and distance transform compatibility * Add tests to imgproc/test/test_connectedcomponents.cpp * Change of test_connectedcomponents.cpp for c++98 support
141 lines
4.8 KiB
C++
141 lines
4.8 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
class CV_ConnectedComponentsTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_ConnectedComponentsTest();
|
|
~CV_ConnectedComponentsTest();
|
|
protected:
|
|
void run(int);
|
|
};
|
|
|
|
CV_ConnectedComponentsTest::CV_ConnectedComponentsTest() {}
|
|
CV_ConnectedComponentsTest::~CV_ConnectedComponentsTest() {}
|
|
|
|
// This function force a row major order for the labels
|
|
void normalizeLabels(Mat1i& imgLabels, int iNumLabels) {
|
|
vector<int> vecNewLabels(iNumLabels + 1, 0);
|
|
int iMaxNewLabel = 0;
|
|
|
|
for (int r = 0; r<imgLabels.rows; ++r) {
|
|
for (int c = 0; c<imgLabels.cols; ++c) {
|
|
int iCurLabel = imgLabels(r, c);
|
|
if (iCurLabel>0) {
|
|
if (vecNewLabels[iCurLabel] == 0) {
|
|
vecNewLabels[iCurLabel] = ++iMaxNewLabel;
|
|
}
|
|
imgLabels(r, c) = vecNewLabels[iCurLabel];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CV_ConnectedComponentsTest::run( int /* start_from */)
|
|
{
|
|
|
|
int ccltype[] = { cv::CCL_WU, cv::CCL_DEFAULT, cv::CCL_GRANA };
|
|
|
|
string exp_path = string(ts->get_data_path()) + "connectedcomponents/ccomp_exp.png";
|
|
Mat exp = imread(exp_path, 0);
|
|
Mat orig = imread(string(ts->get_data_path()) + "connectedcomponents/concentric_circles.png", 0);
|
|
|
|
if (orig.empty())
|
|
{
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
return;
|
|
}
|
|
|
|
Mat bw = orig > 128;
|
|
|
|
for (uint cclt = 0; cclt < sizeof(ccltype)/sizeof(int); ++cclt)
|
|
{
|
|
|
|
Mat1i labelImage;
|
|
int nLabels = connectedComponents(bw, labelImage, 8, CV_32S, ccltype[cclt]);
|
|
|
|
normalizeLabels(labelImage, nLabels);
|
|
|
|
// Validate test results
|
|
for (int r = 0; r < labelImage.rows; ++r){
|
|
for (int c = 0; c < labelImage.cols; ++c){
|
|
int l = labelImage.at<int>(r, c);
|
|
bool pass = l >= 0 && l <= nLabels;
|
|
if (!pass){
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (exp.empty() || orig.size() != exp.size())
|
|
{
|
|
imwrite(exp_path, labelImage);
|
|
exp = labelImage;
|
|
}
|
|
|
|
if (0 != cvtest::norm(labelImage > 0, exp > 0, NORM_INF))
|
|
{
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
return;
|
|
}
|
|
if (nLabels != cvtest::norm(labelImage, NORM_INF) + 1)
|
|
{
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, regression) { CV_ConnectedComponentsTest test; test.safe_run(); }
|