opencv/modules/objdetect/src/linemod.cpp
2012-04-13 21:50:59 +00:00

1851 lines
59 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <limits>
namespace cv
{
namespace linemod
{
// struct Feature
/**
* \brief Get the label [0,8) of the single bit set in quantized.
*/
static inline int getLabel(int quantized)
{
switch (quantized)
{
case 1: return 0;
case 2: return 1;
case 4: return 2;
case 8: return 3;
case 16: return 4;
case 32: return 5;
case 64: return 6;
case 128: return 7;
default:
CV_Error(CV_StsBadArg, "Invalid value of quantized parameter");
return -1; //avoid warning
}
}
void Feature::read(const FileNode& fn)
{
FileNodeIterator fni = fn.begin();
fni >> x >> y >> label;
}
void Feature::write(FileStorage& fs) const
{
fs << "[:" << x << y << label << "]";
}
// struct Template
/**
* \brief Crop a set of overlapping templates from different modalities.
*
* \param[in,out] templates Set of templates representing the same object view.
*
* \return The bounding box of all the templates in original image coordinates.
*/
Rect cropTemplates(std::vector<Template>& templates)
{
int min_x = std::numeric_limits<int>::max();
int min_y = std::numeric_limits<int>::max();
int max_x = std::numeric_limits<int>::min();
int max_y = std::numeric_limits<int>::min();
// First pass: find min/max feature x,y over all pyramid levels and modalities
for (int i = 0; i < (int)templates.size(); ++i)
{
Template& templ = templates[i];
for (int j = 0; j < (int)templ.features.size(); ++j)
{
int x = templ.features[j].x << templ.pyramid_level;
int y = templ.features[j].y << templ.pyramid_level;
min_x = std::min(min_x, x);
min_y = std::min(min_y, y);
max_x = std::max(max_x, x);
max_y = std::max(max_y, y);
}
}
/// @todo Why require even min_x, min_y?
if (min_x % 2 == 1) --min_x;
if (min_y % 2 == 1) --min_y;
// Second pass: set width/height and shift all feature positions
for (int i = 0; i < (int)templates.size(); ++i)
{
Template& templ = templates[i];
templ.width = (max_x - min_x) >> templ.pyramid_level;
templ.height = (max_y - min_y) >> templ.pyramid_level;
int offset_x = min_x >> templ.pyramid_level;
int offset_y = min_y >> templ.pyramid_level;
for (int j = 0; j < (int)templ.features.size(); ++j)
{
templ.features[j].x -= offset_x;
templ.features[j].y -= offset_y;
}
}
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
}
void Template::read(const FileNode& fn)
{
width = fn["width"];
height = fn["height"];
pyramid_level = fn["pyramid_level"];
FileNode features_fn = fn["features"];
features.resize(features_fn.size());
FileNodeIterator it = features_fn.begin(), it_end = features_fn.end();
for (int i = 0; it != it_end; ++it, ++i)
{
features[i].read(*it);
}
}
void Template::write(FileStorage& fs) const
{
fs << "width" << width;
fs << "height" << height;
fs << "pyramid_level" << pyramid_level;
fs << "features" << "[";
for (int i = 0; i < (int)features.size(); ++i)
{
features[i].write(fs);
}
fs << "]"; // features
}
/****************************************************************************************\
* Modality interfaces *
\****************************************************************************************/
void QuantizedPyramid::selectScatteredFeatures(const std::vector<Candidate>& candidates,
std::vector<Feature>& features,
size_t num_features, float distance)
{
features.clear();
float distance_sq = CV_SQR(distance);
int i = 0;
while (features.size() < num_features)
{
Candidate c = candidates[i];
// Add if sufficient distance away from any previously chosen feature
bool keep = true;
for (int j = 0; (j < (int)features.size()) && keep; ++j)
{
Feature f = features[j];
keep = CV_SQR(c.f.x - f.x) + CV_SQR(c.f.y - f.y) >= distance_sq;
}
if (keep)
features.push_back(c.f);
if (++i == (int)candidates.size())
{
// Start back at beginning, and relax required distance
i = 0;
distance -= 1.0f;
distance_sq = CV_SQR(distance);
}
}
}
Ptr<Modality> Modality::create(const std::string& modality_type)
{
if (modality_type == "ColorGradient")
return new ColorGradient();
else if (modality_type == "DepthNormal")
return new DepthNormal();
else
return NULL;
}
Ptr<Modality> Modality::create(const FileNode& fn)
{
std::string type = fn["type"];
Ptr<Modality> modality = create(type);
modality->read(fn);
return modality;
}
void colormap(const Mat& quantized, Mat& dst)
{
std::vector<Vec3b> lut(8);
lut[0] = Vec3b( 0, 0, 255);
lut[1] = Vec3b( 0, 170, 255);
lut[2] = Vec3b( 0, 255, 170);
lut[3] = Vec3b( 0, 255, 0);
lut[4] = Vec3b(170, 255, 0);
lut[5] = Vec3b(255, 170, 0);
lut[6] = Vec3b(255, 0, 0);
lut[7] = Vec3b(255, 0, 170);
dst = Mat::zeros(quantized.size(), CV_8UC3);
for (int r = 0; r < dst.rows; ++r)
{
const uchar* quant_r = quantized.ptr(r);
Vec3b* dst_r = dst.ptr<Vec3b>(r);
for (int c = 0; c < dst.cols; ++c)
{
uchar q = quant_r[c];
if (q)
dst_r[c] = lut[getLabel(q)];
}
}
}
/****************************************************************************************\
* Color gradient modality *
\****************************************************************************************/
// Forward declaration
void hysteresisGradient(Mat& magnitude, Mat& angle,
Mat& ap_tmp, float threshold);
/**
* \brief Compute quantized orientation image from color image.
*
* Implements section 2.2 "Computing the Gradient Orientations."
*
* \param[in] src The source 8-bit, 3-channel image.
* \param[out] magnitude Destination floating-point array of squared magnitudes.
* \param[out] angle Destination 8-bit array of orientations. Each bit
* represents one bin of the orientation space.
* \param threshold Magnitude threshold. Keep only gradients whose norms are
* larger than this.
*/
void quantizedOrientations(const Mat& src, Mat& magnitude,
Mat& angle, float threshold)
{
magnitude.create(src.size(), CV_32F);
// Allocate temporary buffers
Size size = src.size();
Mat sobel_3dx; // per-channel horizontal derivative
Mat sobel_3dy; // per-channel vertical derivative
Mat sobel_dx(size, CV_32F); // maximum horizontal derivative
Mat sobel_dy(size, CV_32F); // maximum vertical derivative
Mat sobel_ag; // final gradient orientation (unquantized)
Mat smoothed;
// Compute horizontal and vertical image derivatives on all color channels separately
static const int KERNEL_SIZE = 7;
// For some reason cvSmooth/cv::GaussianBlur, cvSobel/cv::Sobel have different defaults for border handling...
GaussianBlur(src, smoothed, Size(KERNEL_SIZE, KERNEL_SIZE), 0, 0, BORDER_REPLICATE);
Sobel(smoothed, sobel_3dx, CV_16S, 1, 0, 3, 1.0, 0.0, BORDER_REPLICATE);
Sobel(smoothed, sobel_3dy, CV_16S, 0, 1, 3, 1.0, 0.0, BORDER_REPLICATE);
short * ptrx = (short *)sobel_3dx.data;
short * ptry = (short *)sobel_3dy.data;
float * ptr0x = (float *)sobel_dx.data;
float * ptr0y = (float *)sobel_dy.data;
float * ptrmg = (float *)magnitude.data;
const int length1 = static_cast<const int>(sobel_3dx.step1());
const int length2 = static_cast<const int>(sobel_3dy.step1());
const int length3 = static_cast<const int>(sobel_dx.step1());
const int length4 = static_cast<const int>(sobel_dy.step1());
const int length5 = static_cast<const int>(magnitude.step1());
const int length0 = sobel_3dy.cols * 3;
for (int r = 0; r < sobel_3dy.rows; ++r)
{
int ind = 0;
for (int i = 0; i < length0; i += 3)
{
// Use the gradient orientation of the channel whose magnitude is largest
int mag1 = CV_SQR(ptrx[i]) + CV_SQR(ptry[i]);
int mag2 = CV_SQR(ptrx[i + 1]) + CV_SQR(ptry[i + 1]);
int mag3 = CV_SQR(ptrx[i + 2]) + CV_SQR(ptry[i + 2]);
if (mag1 >= mag2 && mag1 >= mag3)
{
ptr0x[ind] = ptrx[i];
ptr0y[ind] = ptry[i];
ptrmg[ind] = (float)mag1;
}
else if (mag2 >= mag1 && mag2 >= mag3)
{
ptr0x[ind] = ptrx[i + 1];
ptr0y[ind] = ptry[i + 1];
ptrmg[ind] = (float)mag2;
}
else
{
ptr0x[ind] = ptrx[i + 2];
ptr0y[ind] = ptry[i + 2];
ptrmg[ind] = (float)mag3;
}
++ind;
}
ptrx += length1;
ptry += length2;
ptr0x += length3;
ptr0y += length4;
ptrmg += length5;
}
// Calculate the final gradient orientations
phase(sobel_dx, sobel_dy, sobel_ag, true);
hysteresisGradient(magnitude, angle, sobel_ag, CV_SQR(threshold));
}
void hysteresisGradient(Mat& magnitude, Mat& quantized_angle,
Mat& angle, float threshold)
{
// Quantize 360 degree range of orientations into 16 buckets
// Note that [0, 11.25), [348.75, 360) both get mapped in the end to label 0,
// for stability of horizontal and vertical features.
Mat_<unsigned char> quantized_unfiltered;
angle.convertTo(quantized_unfiltered, CV_8U, 16.0 / 360.0);
// Zero out top and bottom rows
/// @todo is this necessary, or even correct?
memset(quantized_unfiltered.ptr(), 0, quantized_unfiltered.cols);
memset(quantized_unfiltered.ptr(quantized_unfiltered.rows - 1), 0, quantized_unfiltered.cols);
// Zero out first and last columns
for (int r = 0; r < quantized_unfiltered.rows; ++r)
{
quantized_unfiltered(r, 0) = 0;
quantized_unfiltered(r, quantized_unfiltered.cols - 1) = 0;
}
// Mask 16 buckets into 8 quantized orientations
for (int r = 1; r < angle.rows - 1; ++r)
{
uchar* quant_r = quantized_unfiltered.ptr<uchar>(r);
for (int c = 1; c < angle.cols - 1; ++c)
{
quant_r[c] &= 7;
}
}
// Filter the raw quantized image. Only accept pixels where the magnitude is above some
// threshold, and there is local agreement on the quantization.
quantized_angle = Mat::zeros(angle.size(), CV_8U);
for (int r = 1; r < angle.rows - 1; ++r)
{
float* mag_r = magnitude.ptr<float>(r);
for (int c = 1; c < angle.cols - 1; ++c)
{
if (mag_r[c] > threshold)
{
// Compute histogram of quantized bins in 3x3 patch around pixel
int histogram[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uchar* patch3x3_row = &quantized_unfiltered(r-1, c-1);
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
patch3x3_row += quantized_unfiltered.step1();
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
patch3x3_row += quantized_unfiltered.step1();
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
// Find bin with the most votes from the patch
int max_votes = 0;
int index = -1;
for (int i = 0; i < 8; ++i)
{
if (max_votes < histogram[i])
{
index = i;
max_votes = histogram[i];
}
}
// Only accept the quantization if majority of pixels in the patch agree
static const int NEIGHBOR_THRESHOLD = 5;
if (max_votes >= NEIGHBOR_THRESHOLD)
quantized_angle.at<uchar>(r, c) = 1 << index;
}
}
}
}
class ColorGradientPyramid : public QuantizedPyramid
{
public:
ColorGradientPyramid(const Mat& src, const Mat& mask,
float weak_threshold, size_t num_features,
float strong_threshold);
virtual void quantize(Mat& dst) const;
virtual bool extractTemplate(Template& templ) const;
virtual void pyrDown();
protected:
/// Recalculate angle and magnitude images
void update();
Mat src;
Mat mask;
int pyramid_level;
Mat angle;
Mat magnitude;
float weak_threshold;
size_t num_features;
float strong_threshold;
};
ColorGradientPyramid::ColorGradientPyramid(const Mat& src, const Mat& mask,
float weak_threshold, size_t num_features,
float strong_threshold)
: src(src),
mask(mask),
pyramid_level(0),
weak_threshold(weak_threshold),
num_features(num_features),
strong_threshold(strong_threshold)
{
update();
}
void ColorGradientPyramid::update()
{
quantizedOrientations(src, magnitude, angle, weak_threshold);
}
void ColorGradientPyramid::pyrDown()
{
// Some parameters need to be adjusted
num_features /= 2; /// @todo Why not 4?
++pyramid_level;
// Downsample the current inputs
Size size(src.cols / 2, src.rows / 2);
Mat next_src;
cv::pyrDown(src, next_src, size);
src = next_src;
if (!mask.empty())
{
Mat next_mask;
resize(mask, next_mask, size, 0.0, 0.0, CV_INTER_NN);
mask = next_mask;
}
update();
}
void ColorGradientPyramid::quantize(Mat& dst) const
{
dst = Mat::zeros(angle.size(), CV_8U);
angle.copyTo(dst, mask);
}
bool ColorGradientPyramid::extractTemplate(Template& templ) const
{
// Want features on the border to distinguish from background
Mat local_mask;
if (!mask.empty())
{
erode(mask, local_mask, Mat(), Point(-1,-1), 1, BORDER_REPLICATE);
subtract(mask, local_mask, local_mask);
}
// Create sorted list of all pixels with magnitude greater than a threshold
std::vector<Candidate> candidates;
bool no_mask = local_mask.empty();
float threshold_sq = CV_SQR(strong_threshold);
for (int r = 0; r < magnitude.rows; ++r)
{
const uchar* angle_r = angle.ptr<uchar>(r);
const float* magnitude_r = magnitude.ptr<float>(r);
const uchar* mask_r = no_mask ? NULL : local_mask.ptr<uchar>(r);
for (int c = 0; c < magnitude.cols; ++c)
{
if (no_mask || mask_r[c])
{
uchar quantized = angle_r[c];
if (quantized > 0)
{
float score = magnitude_r[c];
if (score > threshold_sq)
{
candidates.push_back(Candidate(c, r, getLabel(quantized), score));
}
}
}
}
}
// We require a certain number of features
if (candidates.size() < num_features)
return false;
// NOTE: Stable sort to agree with old code, which used std::list::sort()
std::stable_sort(candidates.begin(), candidates.end());
// Use heuristic based on surplus of candidates in narrow outline for initial distance threshold
float distance = static_cast<float>(candidates.size() / num_features + 1);
selectScatteredFeatures(candidates, templ.features, num_features, distance);
// Size determined externally, needs to match templates for other modalities
templ.width = -1;
templ.height = -1;
templ.pyramid_level = pyramid_level;
return true;
}
ColorGradient::ColorGradient()
: weak_threshold(10.0f),
num_features(63),
strong_threshold(55.0f)
{
}
ColorGradient::ColorGradient(float weak_threshold, size_t num_features, float strong_threshold)
: weak_threshold(weak_threshold),
num_features(num_features),
strong_threshold(strong_threshold)
{
}
static const char CG_NAME[] = "ColorGradient";
std::string ColorGradient::name() const
{
return CG_NAME;
}
Ptr<QuantizedPyramid> ColorGradient::processImpl(const Mat& src,
const Mat& mask) const
{
return new ColorGradientPyramid(src, mask, weak_threshold, num_features, strong_threshold);
}
void ColorGradient::read(const FileNode& fn)
{
std::string type = fn["type"];
CV_Assert(type == CG_NAME);
weak_threshold = fn["weak_threshold"];
num_features = int(fn["num_features"]);
strong_threshold = fn["strong_threshold"];
}
void ColorGradient::write(FileStorage& fs) const
{
fs << "type" << CG_NAME;
fs << "weak_threshold" << weak_threshold;
fs << "num_features" << int(num_features);
fs << "strong_threshold" << strong_threshold;
}
/****************************************************************************************\
* Depth normal modality *
\****************************************************************************************/
// Contains GRANULARITY and NORMAL_LUT
#include "normal_lut.i"
static void accumBilateral(long delta, long i, long j, long * A, long * b, int threshold)
{
long f = std::abs(delta) < threshold ? 1 : 0;
const long fi = f * i;
const long fj = f * j;
A[0] += fi * i;
A[1] += fi * j;
A[3] += fj * j;
b[0] += fi * delta;
b[1] += fj * delta;
}
/**
* \brief Compute quantized normal image from depth image.
*
* Implements section 2.6 "Extension to Dense Depth Sensors."
*
* \param[in] src The source 16-bit depth image (in mm).
* \param[out] dst The destination 8-bit image. Each bit represents one bin of
* the view cone.
* \param distance_threshold Ignore pixels beyond this distance.
* \param difference_threshold When computing normals, ignore contributions of pixels whose
* depth difference with the central pixel is above this threshold.
*
* \todo Should also need camera model, or at least focal lengths? Replace distance_threshold with mask?
*/
void quantizedNormals(const Mat& src, Mat& dst, int distance_threshold,
int difference_threshold)
{
dst = Mat::zeros(src.size(), CV_8U);
IplImage src_ipl = src;
IplImage* ap_depth_data = &src_ipl;
IplImage dst_ipl = dst;
IplImage* dst_ipl_ptr = &dst_ipl;
IplImage** m_dep = &dst_ipl_ptr;
unsigned short * lp_depth = (unsigned short *)ap_depth_data->imageData;
unsigned char * lp_normals = (unsigned char *)m_dep[0]->imageData;
const int l_W = ap_depth_data->width;
const int l_H = ap_depth_data->height;
const int l_r = 5; // used to be 7
const int l_offset0 = -l_r - l_r * l_W;
const int l_offset1 = 0 - l_r * l_W;
const int l_offset2 = +l_r - l_r * l_W;
const int l_offset3 = -l_r;
const int l_offset4 = +l_r;
const int l_offset5 = -l_r + l_r * l_W;
const int l_offset6 = 0 + l_r * l_W;
const int l_offset7 = +l_r + l_r * l_W;
const int l_offsetx = GRANULARITY / 2;
const int l_offsety = GRANULARITY / 2;
for (int l_y = l_r; l_y < l_H - l_r - 1; ++l_y)
{
unsigned short * lp_line = lp_depth + (l_y * l_W + l_r);
unsigned char * lp_norm = lp_normals + (l_y * l_W + l_r);
for (int l_x = l_r; l_x < l_W - l_r - 1; ++l_x)
{
long l_d = lp_line[0];
if (l_d < distance_threshold)
{
// accum
long l_A[4]; l_A[0] = l_A[1] = l_A[2] = l_A[3] = 0;
long l_b[2]; l_b[0] = l_b[1] = 0;
accumBilateral(lp_line[l_offset0] - l_d, -l_r, -l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset1] - l_d, 0, -l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset2] - l_d, +l_r, -l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset3] - l_d, -l_r, 0, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset4] - l_d, +l_r, 0, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset5] - l_d, -l_r, +l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset6] - l_d, 0, +l_r, l_A, l_b, difference_threshold);
accumBilateral(lp_line[l_offset7] - l_d, +l_r, +l_r, l_A, l_b, difference_threshold);
// solve
long l_det = l_A[0] * l_A[3] - l_A[1] * l_A[1];
long l_ddx = l_A[3] * l_b[0] - l_A[1] * l_b[1];
long l_ddy = -l_A[1] * l_b[0] + l_A[0] * l_b[1];
/// @todo Magic number 1150 is focal length? This is something like
/// f in SXGA mode, but in VGA is more like 530.
float l_nx = static_cast<float>(1150 * l_ddx);
float l_ny = static_cast<float>(1150 * l_ddy);
float l_nz = static_cast<float>(-l_det * l_d);
float l_sqrt = sqrtf(l_nx * l_nx + l_ny * l_ny + l_nz * l_nz);
if (l_sqrt > 0)
{
float l_norminv = 1.0f / (l_sqrt);
l_nx *= l_norminv;
l_ny *= l_norminv;
l_nz *= l_norminv;
//*lp_norm = fabs(l_nz)*255;
int l_val1 = static_cast<int>(l_nx * l_offsetx + l_offsetx);
int l_val2 = static_cast<int>(l_ny * l_offsety + l_offsety);
int l_val3 = static_cast<int>(l_nz * GRANULARITY + GRANULARITY);
*lp_norm = NORMAL_LUT[l_val3][l_val2][l_val1];
}
else
{
*lp_norm = 0; // Discard shadows from depth sensor
}
}
else
{
*lp_norm = 0; //out of depth
}
++lp_line;
++lp_norm;
}
}
cvSmooth(m_dep[0], m_dep[0], CV_MEDIAN, 5, 5);
}
class DepthNormalPyramid : public QuantizedPyramid
{
public:
DepthNormalPyramid(const Mat& src, const Mat& mask,
int distance_threshold, int difference_threshold, size_t num_features,
int extract_threshold);
virtual void quantize(Mat& dst) const;
virtual bool extractTemplate(Template& templ) const;
virtual void pyrDown();
protected:
Mat mask;
int pyramid_level;
Mat normal;
size_t num_features;
int extract_threshold;
};
DepthNormalPyramid::DepthNormalPyramid(const Mat& src, const Mat& mask,
int distance_threshold, int difference_threshold, size_t num_features,
int extract_threshold)
: mask(mask),
pyramid_level(0),
num_features(num_features),
extract_threshold(extract_threshold)
{
quantizedNormals(src, normal, distance_threshold, difference_threshold);
}
void DepthNormalPyramid::pyrDown()
{
// Some parameters need to be adjusted
num_features /= 2; /// @todo Why not 4?
extract_threshold /= 2;
++pyramid_level;
// In this case, NN-downsample the quantized image
Mat next_normal;
Size size(normal.cols / 2, normal.rows / 2);
resize(normal, next_normal, size, 0.0, 0.0, CV_INTER_NN);
normal = next_normal;
if (!mask.empty())
{
Mat next_mask;
resize(mask, next_mask, size, 0.0, 0.0, CV_INTER_NN);
mask = next_mask;
}
}
void DepthNormalPyramid::quantize(Mat& dst) const
{
dst = Mat::zeros(normal.size(), CV_8U);
normal.copyTo(dst, mask);
}
bool DepthNormalPyramid::extractTemplate(Template& templ) const
{
// Features right on the object border are unreliable
Mat local_mask;
if (!mask.empty())
{
erode(mask, local_mask, Mat(), Point(-1,-1), 2, BORDER_REPLICATE);
}
// Compute distance transform for each individual quantized orientation
Mat temp = Mat::zeros(normal.size(), CV_8U);
Mat distances[8];
for (int i = 0; i < 8; ++i)
{
temp.setTo(1 << i, local_mask);
bitwise_and(temp, normal, temp);
// temp is now non-zero at pixels in the mask with quantized orientation i
distanceTransform(temp, distances[i], CV_DIST_C, 3);
}
// Count how many features taken for each label
int label_counts[8] = {0, 0, 0, 0, 0, 0, 0, 0};
// Create sorted list of candidate features
std::vector<Candidate> candidates;
bool no_mask = local_mask.empty();
for (int r = 0; r < normal.rows; ++r)
{
const uchar* normal_r = normal.ptr<uchar>(r);
const uchar* mask_r = no_mask ? NULL : local_mask.ptr<uchar>(r);
for (int c = 0; c < normal.cols; ++c)
{
if (no_mask || mask_r[c])
{
uchar quantized = normal_r[c];
if (quantized != 0 && quantized != 255) // background and shadow
{
int label = getLabel(quantized);
// Accept if distance to a pixel belonging to a different label is greater than
// some threshold. IOW, ideal feature is in the center of a large homogeneous
// region.
float score = distances[label].at<float>(r, c);
if (score >= extract_threshold)
{
candidates.push_back( Candidate(c, r, label, score) );
++label_counts[label];
}
}
}
}
}
// We require a certain number of features
if (candidates.size() < num_features)
return false;
// Prefer large distances, but also want to collect features over all 8 labels.
// So penalize labels with lots of candidates.
for (size_t i = 0; i < candidates.size(); ++i)
{
Candidate& c = candidates[i];
c.score /= (float)label_counts[c.f.label];
}
std::stable_sort(candidates.begin(), candidates.end());
// Use heuristic based on object area for initial distance threshold
int area = static_cast<int>(no_mask ? normal.total() : countNonZero(local_mask));
float distance = sqrtf(static_cast<float>(area)) / sqrtf(static_cast<float>(num_features)) + 1.5f;
selectScatteredFeatures(candidates, templ.features, num_features, distance);
// Size determined externally, needs to match templates for other modalities
templ.width = -1;
templ.height = -1;
templ.pyramid_level = pyramid_level;
return true;
}
DepthNormal::DepthNormal()
: distance_threshold(2000),
difference_threshold(50),
num_features(63),
extract_threshold(2)
{
}
DepthNormal::DepthNormal(int distance_threshold, int difference_threshold, size_t num_features,
int extract_threshold)
: distance_threshold(distance_threshold),
difference_threshold(difference_threshold),
num_features(num_features),
extract_threshold(extract_threshold)
{
}
static const char DN_NAME[] = "DepthNormal";
std::string DepthNormal::name() const
{
return DN_NAME;
}
Ptr<QuantizedPyramid> DepthNormal::processImpl(const Mat& src,
const Mat& mask) const
{
return new DepthNormalPyramid(src, mask, distance_threshold, difference_threshold,
num_features, extract_threshold);
}
void DepthNormal::read(const FileNode& fn)
{
std::string type = fn["type"];
CV_Assert(type == DN_NAME);
distance_threshold = fn["distance_threshold"];
difference_threshold = fn["difference_threshold"];
num_features = int(fn["num_features"]);
extract_threshold = fn["extract_threshold"];
}
void DepthNormal::write(FileStorage& fs) const
{
fs << "type" << DN_NAME;
fs << "distance_threshold" << distance_threshold;
fs << "difference_threshold" << difference_threshold;
fs << "num_features" << int(num_features);
fs << "extract_threshold" << extract_threshold;
}
/****************************************************************************************\
* Response maps *
\****************************************************************************************/
void orUnaligned8u(const uchar * src, const int src_stride,
uchar * dst, const int dst_stride,
const int width, const int height)
{
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
bool src_aligned = reinterpret_cast<unsigned long long>(src) % 16 == 0;
#endif
for (int r = 0; r < height; ++r)
{
int c = 0;
#if CV_SSE2
// Use aligned loads if possible
if (haveSSE2 && src_aligned)
{
for ( ; c < width - 15; c += 16)
{
const __m128i* src_ptr = reinterpret_cast<const __m128i*>(src + c);
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c);
*dst_ptr = _mm_or_si128(*dst_ptr, *src_ptr);
}
}
#if CV_SSE3
// Use LDDQU for fast unaligned load
else if (haveSSE3)
{
for ( ; c < width - 15; c += 16)
{
__m128i val = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(src + c));
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c);
*dst_ptr = _mm_or_si128(*dst_ptr, val);
}
}
#endif
// Fall back to MOVDQU
else if (haveSSE2)
{
for ( ; c < width - 15; c += 16)
{
__m128i val = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src + c));
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c);
*dst_ptr = _mm_or_si128(*dst_ptr, val);
}
}
#endif
for ( ; c < width; ++c)
dst[c] |= src[c];
// Advance to next row
src += src_stride;
dst += dst_stride;
}
}
/**
* \brief Spread binary labels in a quantized image.
*
* Implements section 2.3 "Spreading the Orientations."
*
* \param[in] src The source 8-bit quantized image.
* \param[out] dst Destination 8-bit spread image.
* \param T Sampling step. Spread labels T/2 pixels in each direction.
*/
void spread(const Mat& src, Mat& dst, int T)
{
// Allocate and zero-initialize spread (OR'ed) image
dst = Mat::zeros(src.size(), CV_8U);
// Fill in spread gradient image (section 2.3)
for (int r = 0; r < T; ++r)
{
int height = src.rows - r;
for (int c = 0; c < T; ++c)
{
orUnaligned8u(&src.at<unsigned char>(r, c), static_cast<const int>(src.step1()), dst.ptr(),
static_cast<const int>(dst.step1()), src.cols - c, height);
}
}
}
// Auto-generated by create_similarity_lut.py
CV_DECL_ALIGNED(16) static const unsigned char SIMILARITY_LUT[256] = {0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 0, 3, 4, 4, 3, 3, 4, 4, 2, 3, 4, 4, 3, 3, 4, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 0, 3, 2, 3, 1, 3, 2, 3, 0, 3, 2, 3, 1, 3, 2, 3, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 4, 4, 3, 3, 4, 4, 2, 3, 4, 4, 3, 3, 4, 4, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 2, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 0, 3, 2, 3, 1, 3, 2, 3, 0, 3, 2, 3, 1, 3, 2, 3, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4};
/**
* \brief Precompute response maps for a spread quantized image.
*
* Implements section 2.4 "Precomputing Response Maps."
*
* \param[in] src The source 8-bit spread quantized image.
* \param[out] response_maps Vector of 8 response maps, one for each bit label.
*/
void computeResponseMaps(const Mat& src, std::vector<Mat>& response_maps)
{
CV_Assert((src.rows * src.cols) % 16 == 0);
// Allocate response maps
response_maps.resize(8);
for (int i = 0; i < 8; ++i)
response_maps[i].create(src.size(), CV_8U);
Mat lsb4(src.size(), CV_8U);
Mat msb4(src.size(), CV_8U);
for (int r = 0; r < src.rows; ++r)
{
const uchar* src_r = src.ptr(r);
uchar* lsb4_r = lsb4.ptr(r);
uchar* msb4_r = msb4.ptr(r);
for (int c = 0; c < src.cols; ++c)
{
// Least significant 4 bits of spread image pixel
lsb4_r[c] = src_r[c] & 15;
// Most significant 4 bits, right-shifted to be in [0, 16)
msb4_r[c] = (src_r[c] & 240) >> 4;
}
}
#if CV_SSSE3
volatile bool haveSSSE3 = checkHardwareSupport(CV_CPU_SSSE3);
if (haveSSSE3)
{
const __m128i* lut = reinterpret_cast<const __m128i*>(SIMILARITY_LUT);
for (int ori = 0; ori < 8; ++ori)
{
__m128i* map_data = response_maps[ori].ptr<__m128i>();
__m128i* lsb4_data = lsb4.ptr<__m128i>();
__m128i* msb4_data = msb4.ptr<__m128i>();
// Precompute the 2D response map S_i (section 2.4)
for (int i = 0; i < (src.rows * src.cols) / 16; ++i)
{
// Using SSE shuffle for table lookup on 4 orientations at a time
// The most/least significant 4 bits are used as the LUT index
__m128i res1 = _mm_shuffle_epi8(lut[2*ori + 0], lsb4_data[i]);
__m128i res2 = _mm_shuffle_epi8(lut[2*ori + 1], msb4_data[i]);
// Combine the results into a single similarity score
map_data[i] = _mm_max_epu8(res1, res2);
}
}
}
else
#endif
{
// For each of the 8 quantized orientations...
for (int ori = 0; ori < 8; ++ori)
{
uchar* map_data = response_maps[ori].ptr<uchar>();
uchar* lsb4_data = lsb4.ptr<uchar>();
uchar* msb4_data = msb4.ptr<uchar>();
const uchar* lut_low = SIMILARITY_LUT + 32*ori;
const uchar* lut_hi = lut_low + 16;
for (int i = 0; i < src.rows * src.cols; ++i)
{
map_data[i] = std::max(lut_low[ lsb4_data[i] ], lut_hi[ msb4_data[i] ]);
}
}
}
}
/**
* \brief Convert a response map to fast linearized ordering.
*
* Implements section 2.5 "Linearizing the Memory for Parallelization."
*
* \param[in] response_map The 2D response map, an 8-bit image.
* \param[out] linearized The response map in linearized order. It has T*T rows,
* each of which is a linear memory of length (W/T)*(H/T).
* \param T Sampling step.
*/
void linearize(const Mat& response_map, Mat& linearized, int T)
{
CV_Assert(response_map.rows % T == 0);
CV_Assert(response_map.cols % T == 0);
// linearized has T^2 rows, where each row is a linear memory
int mem_width = response_map.cols / T;
int mem_height = response_map.rows / T;
linearized.create(T*T, mem_width * mem_height, CV_8U);
// Outer two for loops iterate over top-left T^2 starting pixels
int index = 0;
for (int r_start = 0; r_start < T; ++r_start)
{
for (int c_start = 0; c_start < T; ++c_start)
{
uchar* memory = linearized.ptr(index);
++index;
// Inner two loops copy every T-th pixel into the linear memory
for (int r = r_start; r < response_map.rows; r += T)
{
const uchar* response_data = response_map.ptr(r);
for (int c = c_start; c < response_map.cols; c += T)
*memory++ = response_data[c];
}
}
}
}
/****************************************************************************************\
* Linearized similarities *
\****************************************************************************************/
const unsigned char* accessLinearMemory(const std::vector<Mat>& linear_memories,
const Feature& f, int T, int W)
{
// Retrieve the TxT grid of linear memories associated with the feature label
const Mat& memory_grid = linear_memories[f.label];
CV_DbgAssert(memory_grid.rows == T*T);
CV_DbgAssert(f.x >= 0);
CV_DbgAssert(f.y >= 0);
// The LM we want is at (x%T, y%T) in the TxT grid (stored as the rows of memory_grid)
int grid_x = f.x % T;
int grid_y = f.y % T;
int grid_index = grid_y * T + grid_x;
CV_DbgAssert(grid_index >= 0);
CV_DbgAssert(grid_index < memory_grid.rows);
const unsigned char* memory = memory_grid.ptr(grid_index);
// Within the LM, the feature is at (x/T, y/T). W is the "width" of the LM, the
// input image width decimated by T.
int lm_x = f.x / T;
int lm_y = f.y / T;
int lm_index = lm_y * W + lm_x;
CV_DbgAssert(lm_index >= 0);
CV_DbgAssert(lm_index < memory_grid.cols);
return memory + lm_index;
}
/**
* \brief Compute similarity measure for a given template at each sampled image location.
*
* Uses linear memories to compute the similarity measure as described in Fig. 7.
*
* \param[in] linear_memories Vector of 8 linear memories, one for each label.
* \param[in] templ Template to match against.
* \param[out] dst Destination 8-bit similarity image of size (W/T, H/T).
* \param size Size (W, H) of the original input image.
* \param T Sampling step.
*/
void similarity(const std::vector<Mat>& linear_memories, const Template& templ,
Mat& dst, Size size, int T)
{
// 63 features or less is a special case because the max similarity per-feature is 4.
// 255/4 = 63, so up to that many we can add up similarities in 8 bits without worrying
// about overflow. Therefore here we use _mm_add_epi8 as the workhorse, whereas a more
// general function would use _mm_add_epi16.
CV_Assert(templ.features.size() <= 63);
/// @todo Handle more than 255/MAX_RESPONSE features!!
// Decimate input image size by factor of T
int W = size.width / T;
int H = size.height / T;
// Feature dimensions, decimated by factor T and rounded up
int wf = (templ.width - 1) / T + 1;
int hf = (templ.height - 1) / T + 1;
// Span is the range over which we can shift the template around the input image
int span_x = W - wf;
int span_y = H - hf;
// Compute number of contiguous (in memory) pixels to check when sliding feature over
// image. This allows template to wrap around left/right border incorrectly, so any
// wrapped template matches must be filtered out!
int template_positions = span_y * W + span_x + 1; // why add 1?
//int template_positions = (span_y - 1) * W + span_x; // More correct?
/// @todo In old code, dst is buffer of size m_U. Could make it something like
/// (span_x)x(span_y) instead?
dst = Mat::zeros(H, W, CV_8U);
uchar* dst_ptr = dst.ptr<uchar>();
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
#endif
// Compute the similarity measure for this template by accumulating the contribution of
// each feature
for (int i = 0; i < (int)templ.features.size(); ++i)
{
// Add the linear memory at the appropriate offset computed from the location of
// the feature in the template
Feature f = templ.features[i];
// Discard feature if out of bounds
/// @todo Shouldn't actually see x or y < 0 here?
if (f.x < 0 || f.x >= size.width || f.y < 0 || f.y >= size.height)
continue;
const uchar* lm_ptr = accessLinearMemory(linear_memories, f, T, W);
// Now we do an aligned/unaligned add of dst_ptr and lm_ptr with template_positions elements
int j = 0;
// Process responses 16 at a time if vectorization possible
#if CV_SSE2
#if CV_SSE3
if (haveSSE3)
{
// LDDQU may be more efficient than MOVDQU for unaligned load of next 16 responses
for ( ; j < template_positions - 15; j += 16)
{
__m128i responses = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(lm_ptr + j));
__m128i* dst_ptr_sse = reinterpret_cast<__m128i*>(dst_ptr + j);
*dst_ptr_sse = _mm_add_epi8(*dst_ptr_sse, responses);
}
}
else
#endif
if (haveSSE2)
{
// Fall back to MOVDQU
for ( ; j < template_positions - 15; j += 16)
{
__m128i responses = _mm_loadu_si128(reinterpret_cast<const __m128i*>(lm_ptr + j));
__m128i* dst_ptr_sse = reinterpret_cast<__m128i*>(dst_ptr + j);
*dst_ptr_sse = _mm_add_epi8(*dst_ptr_sse, responses);
}
}
#endif
for ( ; j < template_positions; ++j)
dst_ptr[j] += lm_ptr[j];
}
}
/**
* \brief Compute similarity measure for a given template in a local region.
*
* \param[in] linear_memories Vector of 8 linear memories, one for each label.
* \param[in] templ Template to match against.
* \param[out] dst Destination 8-bit similarity image, 16x16.
* \param size Size (W, H) of the original input image.
* \param T Sampling step.
* \param center Center of the local region.
*/
void similarityLocal(const std::vector<Mat>& linear_memories, const Template& templ,
Mat& dst, Size size, int T, Point center)
{
// Similar to whole-image similarity() above. This version takes a position 'center'
// and computes the energy in the 16x16 patch centered on it.
CV_Assert(templ.features.size() <= 63);
// Compute the similarity map in a 16x16 patch around center
int W = size.width / T;
dst = Mat::zeros(16, 16, CV_8U);
// Offset each feature point by the requested center. Further adjust to (-8,-8) from the
// center to get the top-left corner of the 16x16 patch.
// NOTE: We make the offsets multiples of T to agree with results of the original code.
int offset_x = (center.x / T - 8) * T;
int offset_y = (center.y / T - 8) * T;
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
__m128i* dst_ptr_sse = dst.ptr<__m128i>();
#endif
for (int i = 0; i < (int)templ.features.size(); ++i)
{
Feature f = templ.features[i];
f.x += offset_x;
f.y += offset_y;
// Discard feature if out of bounds, possibly due to applying the offset
if (f.x < 0 || f.y < 0 || f.x >= size.width || f.y >= size.height)
continue;
const uchar* lm_ptr = accessLinearMemory(linear_memories, f, T, W);
// Process whole row at a time if vectorization possible
#if CV_SSE2
#if CV_SSE3
if (haveSSE3)
{
// LDDQU may be more efficient than MOVDQU for unaligned load of 16 responses from current row
for (int row = 0; row < 16; ++row)
{
__m128i aligned = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(lm_ptr));
dst_ptr_sse[row] = _mm_add_epi8(dst_ptr_sse[row], aligned);
lm_ptr += W; // Step to next row
}
}
else
#endif
if (haveSSE2)
{
// Fall back to MOVDQU
for (int row = 0; row < 16; ++row)
{
__m128i aligned = _mm_loadu_si128(reinterpret_cast<const __m128i*>(lm_ptr));
dst_ptr_sse[row] = _mm_add_epi8(dst_ptr_sse[row], aligned);
lm_ptr += W; // Step to next row
}
}
else
#endif
{
uchar* dst_ptr = dst.ptr<uchar>();
for (int row = 0; row < 16; ++row)
{
for (int col = 0; col < 16; ++col)
dst_ptr[col] += lm_ptr[col];
dst_ptr += 16;
lm_ptr += W;
}
}
}
}
void addUnaligned8u16u(const uchar * src1, const uchar * src2, ushort * res, int length)
{
const uchar * end = src1 + length;
while (src1 != end)
{
*res = *src1 + *src2;
++src1;
++src2;
++res;
}
}
/**
* \brief Accumulate one or more 8-bit similarity images.
*
* \param[in] similarities Source 8-bit similarity images.
* \param[out] dst Destination 16-bit similarity image.
*/
void addSimilarities(const std::vector<Mat>& similarities, Mat& dst)
{
if (similarities.size() == 1)
{
similarities[0].convertTo(dst, CV_16U);
}
else
{
// NOTE: add() seems to be rather slow in the 8U + 8U -> 16U case
dst.create(similarities[0].size(), CV_16U);
addUnaligned8u16u(similarities[0].ptr(), similarities[1].ptr(), dst.ptr<ushort>(), static_cast<int>(dst.total()));
/// @todo Optimize 16u + 8u -> 16u when more than 2 modalities
for (size_t i = 2; i < similarities.size(); ++i)
add(dst, similarities[i], dst, noArray(), CV_16U);
}
}
/****************************************************************************************\
* High-level Detector API *
\****************************************************************************************/
Detector::Detector()
{
}
Detector::Detector(const std::vector< Ptr<Modality> >& modalities,
const std::vector<int>& T_pyramid)
: modalities(modalities),
pyramid_levels(static_cast<int>(T_pyramid.size())),
T_at_level(T_pyramid)
{
}
void Detector::match(const std::vector<Mat>& sources, float threshold, std::vector<Match>& matches,
const std::vector<std::string>& class_ids, OutputArrayOfArrays quantized_images,
const std::vector<Mat>& masks) const
{
matches.clear();
if (quantized_images.needed())
quantized_images.create(1, static_cast<int>(pyramid_levels * modalities.size()), CV_8U);
assert(sources.size() == modalities.size());
// Initialize each modality with our sources
std::vector< Ptr<QuantizedPyramid> > quantizers;
for (int i = 0; i < (int)modalities.size(); ++i){
Mat mask, source;
source = sources[i];
if(!masks.empty()){
assert(masks.size() == modalities.size());
mask = masks[i];
}
assert(mask.empty() || mask.size() == source.size());
quantizers.push_back(modalities[i]->process(source, mask));
}
// pyramid level -> modality -> quantization
LinearMemoryPyramid lm_pyramid(pyramid_levels,
std::vector<LinearMemories>(modalities.size(), LinearMemories(8)));
// For each pyramid level, precompute linear memories for each modality
std::vector<Size> sizes;
for (int l = 0; l < pyramid_levels; ++l)
{
int T = T_at_level[l];
std::vector<LinearMemories>& lm_level = lm_pyramid[l];
if (l > 0)
{
for (int i = 0; i < (int)quantizers.size(); ++i)
quantizers[i]->pyrDown();
}
Mat quantized, spread_quantized;
std::vector<Mat> response_maps;
for (int i = 0; i < (int)quantizers.size(); ++i)
{
quantizers[i]->quantize(quantized);
spread(quantized, spread_quantized, T);
computeResponseMaps(spread_quantized, response_maps);
LinearMemories& memories = lm_level[i];
for (int j = 0; j < 8; ++j)
linearize(response_maps[j], memories[j], T);
if (quantized_images.needed()) //use copyTo here to side step reference semantics.
quantized.copyTo(quantized_images.getMatRef(static_cast<int>(l*quantizers.size() + i)));
}
sizes.push_back(quantized.size());
}
if (class_ids.empty())
{
// Match all templates
TemplatesMap::const_iterator it = class_templates.begin(), itend = class_templates.end();
for ( ; it != itend; ++it)
matchClass(lm_pyramid, sizes, threshold, matches, it->first, it->second);
}
else
{
// Match only templates for the requested class IDs
for (int i = 0; i < (int)class_ids.size(); ++i)
{
TemplatesMap::const_iterator it = class_templates.find(class_ids[i]);
if (it != class_templates.end())
matchClass(lm_pyramid, sizes, threshold, matches, it->first, it->second);
}
}
// Sort matches by similarity, and prune any duplicates introduced by pyramid refinement
std::sort(matches.begin(), matches.end());
std::vector<Match>::iterator new_end = std::unique(matches.begin(), matches.end());
matches.erase(new_end, matches.end());
}
// Used to filter out weak matches
struct MatchPredicate
{
MatchPredicate(float threshold) : threshold(threshold) {}
bool operator() (const Match& m) { return m.similarity < threshold; }
float threshold;
};
void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid,
const std::vector<Size>& sizes,
float threshold, std::vector<Match>& matches,
const std::string& class_id,
const std::vector<TemplatePyramid>& template_pyramids) const
{
// For each template...
for (size_t template_id = 0; template_id < template_pyramids.size(); ++template_id)
{
const TemplatePyramid& tp = template_pyramids[template_id];
// First match over the whole image at the lowest pyramid level
/// @todo Factor this out into separate function
const std::vector<LinearMemories>& lowest_lm = lm_pyramid.back();
// Compute similarity maps for each modality at lowest pyramid level
std::vector<Mat> similarities(modalities.size());
int lowest_start = static_cast<int>(tp.size() - modalities.size());
int lowest_T = T_at_level.back();
int num_features = 0;
for (int i = 0; i < (int)modalities.size(); ++i)
{
const Template& templ = tp[lowest_start + i];
num_features += static_cast<int>(templ.features.size());
similarity(lowest_lm[i], templ, similarities[i], sizes.back(), lowest_T);
}
// Combine into overall similarity
/// @todo Support weighting the modalities
Mat total_similarity;
addSimilarities(similarities, total_similarity);
// Convert user-friendly percentage to raw similarity threshold. The percentage
// threshold scales from half the max response (what you would expect from applying
// the template to a completely random image) to the max response.
// NOTE: This assumes max per-feature response is 4, so we scale between [2*nf, 4*nf].
int raw_threshold = static_cast<int>(2*num_features + (threshold / 100.f) * (2*num_features) + 0.5f);
// Find initial matches
std::vector<Match> candidates;
for (int r = 0; r < total_similarity.rows; ++r)
{
ushort* row = total_similarity.ptr<ushort>(r);
for (int c = 0; c < total_similarity.cols; ++c)
{
int raw_score = row[c];
if (raw_score > raw_threshold)
{
int offset = lowest_T / 2 + (lowest_T % 2 - 1);
int x = c * lowest_T + offset;
int y = r * lowest_T + offset;
float score =(raw_score * 100.f) / (4 * num_features) + 0.5f;
candidates.push_back(Match(x, y, score, class_id, static_cast<int>(template_id)));
}
}
}
// Locally refine each match by marching up the pyramid
for (int l = pyramid_levels - 2; l >= 0; --l)
{
const std::vector<LinearMemories>& lms = lm_pyramid[l];
int T = T_at_level[l];
int start = static_cast<int>(l * modalities.size());
Size size = sizes[l];
int border = 8 * T;
int offset = T / 2 + (T % 2 - 1);
int max_x = size.width - tp[start].width - border;
int max_y = size.height - tp[start].height - border;
std::vector<Mat> similarities(modalities.size());
Mat total_similarity;
for (int m = 0; m < (int)candidates.size(); ++m)
{
Match& match = candidates[m];
int x = match.x * 2 + 1; /// @todo Support other pyramid distance
int y = match.y * 2 + 1;
// Require 8 (reduced) row/cols to the up/left
x = std::max(x, border);
y = std::max(y, border);
// Require 8 (reduced) row/cols to the down/left, plus the template size
x = std::min(x, max_x);
y = std::min(y, max_y);
// Compute local similarity maps for each modality
int num_features = 0;
for (int i = 0; i < (int)modalities.size(); ++i)
{
const Template& templ = tp[start + i];
num_features += static_cast<int>(templ.features.size());
similarityLocal(lms[i], templ, similarities[i], size, T, Point(x, y));
}
addSimilarities(similarities, total_similarity);
// Find best local adjustment
int best_score = 0;
int best_r = -1, best_c = -1;
for (int r = 0; r < total_similarity.rows; ++r)
{
ushort* row = total_similarity.ptr<ushort>(r);
for (int c = 0; c < total_similarity.cols; ++c)
{
int score = row[c];
if (score > best_score)
{
best_score = score;
best_r = r;
best_c = c;
}
}
}
// Update current match
match.x = (x / T - 8 + best_c) * T + offset;
match.y = (y / T - 8 + best_r) * T + offset;
match.similarity = (best_score * 100.f) / (4 * num_features);
}
// Filter out any matches that drop below the similarity threshold
std::vector<Match>::iterator new_end = std::remove_if(candidates.begin(), candidates.end(),
MatchPredicate(threshold));
candidates.erase(new_end, candidates.end());
}
matches.insert(matches.end(), candidates.begin(), candidates.end());
}
}
int Detector::addTemplate(const std::vector<Mat>& sources, const std::string& class_id,
const Mat& object_mask, Rect* bounding_box)
{
int num_modalities = static_cast<int>(modalities.size());
std::vector<TemplatePyramid>& template_pyramids = class_templates[class_id];
int template_id = static_cast<int>(template_pyramids.size());
TemplatePyramid tp;
tp.resize(num_modalities * pyramid_levels);
// For each modality...
for (int i = 0; i < num_modalities; ++i)
{
// Extract a template at each pyramid level
Ptr<QuantizedPyramid> qp = modalities[i]->process(sources[i], object_mask);
for (int l = 0; l < pyramid_levels; ++l)
{
/// @todo Could do mask subsampling here instead of in pyrDown()
if (l > 0)
qp->pyrDown();
bool success = qp->extractTemplate(tp[l*num_modalities + i]);
if (!success)
return -1;
}
}
Rect bb = cropTemplates(tp);
if (bounding_box)
*bounding_box = bb;
/// @todo Can probably avoid a copy of tp here with swap
template_pyramids.push_back(tp);
return template_id;
}
int Detector::addSyntheticTemplate(const std::vector<Template>& templates, const std::string& class_id)
{
std::vector<TemplatePyramid>& template_pyramids = class_templates[class_id];
int template_id = static_cast<int>(template_pyramids.size());
template_pyramids.push_back(templates);
return template_id;
}
const std::vector<Template>& Detector::getTemplates(const std::string& class_id, int template_id) const
{
TemplatesMap::const_iterator i = class_templates.find(class_id);
CV_Assert(i != class_templates.end());
CV_Assert(i->second.size() > size_t(template_id));
return i->second[template_id];
}
int Detector::numTemplates() const
{
int ret = 0;
TemplatesMap::const_iterator i = class_templates.begin(), iend = class_templates.end();
for ( ; i != iend; ++i)
ret += static_cast<int>(i->second.size());
return ret;
}
int Detector::numTemplates(const std::string& class_id) const
{
TemplatesMap::const_iterator i = class_templates.find(class_id);
if (i == class_templates.end())
return 0;
return static_cast<int>(i->second.size());
}
std::vector<std::string> Detector::classIds() const
{
std::vector<std::string> ids;
TemplatesMap::const_iterator i = class_templates.begin(), iend = class_templates.end();
for ( ; i != iend; ++i)
{
ids.push_back(i->first);
}
return ids;
}
void Detector::read(const FileNode& fn)
{
class_templates.clear();
pyramid_levels = fn["pyramid_levels"];
fn["T"] >> T_at_level;
modalities.clear();
FileNode modalities_fn = fn["modalities"];
FileNodeIterator it = modalities_fn.begin(), it_end = modalities_fn.end();
for ( ; it != it_end; ++it)
{
modalities.push_back(Modality::create(*it));
}
}
void Detector::write(FileStorage& fs) const
{
fs << "pyramid_levels" << pyramid_levels;
fs << "T" << "[:" << T_at_level << "]";
fs << "modalities" << "[";
for (int i = 0; i < (int)modalities.size(); ++i)
{
fs << "{";
modalities[i]->write(fs);
fs << "}";
}
fs << "]"; // modalities
}
std::string Detector::readClass(const FileNode& fn, const std::string &class_id_override)
{
// Verify compatible with Detector settings
FileNode mod_fn = fn["modalities"];
CV_Assert(mod_fn.size() == modalities.size());
FileNodeIterator mod_it = mod_fn.begin(), mod_it_end = mod_fn.end();
int i = 0;
for ( ; mod_it != mod_it_end; ++mod_it, ++i)
CV_Assert(modalities[i]->name() == (std::string)(*mod_it));
CV_Assert((int)fn["pyramid_levels"] == pyramid_levels);
// Detector should not already have this class
std::string class_id;
if (class_id_override.empty())
{
std::string class_id_tmp = fn["class_id"];
CV_Assert(class_templates.find(class_id_tmp) == class_templates.end());
class_id = class_id_tmp;
}
else
{
class_id = class_id_override;
}
TemplatesMap::value_type v(class_id, std::vector<TemplatePyramid>());
std::vector<TemplatePyramid>& tps = v.second;
int expected_id = 0;
FileNode tps_fn = fn["template_pyramids"];
tps.resize(tps_fn.size());
FileNodeIterator tps_it = tps_fn.begin(), tps_it_end = tps_fn.end();
for ( ; tps_it != tps_it_end; ++tps_it, ++expected_id)
{
int template_id = (*tps_it)["template_id"];
CV_Assert(template_id == expected_id);
FileNode templates_fn = (*tps_it)["templates"];
tps[template_id].resize(templates_fn.size());
FileNodeIterator templ_it = templates_fn.begin(), templ_it_end = templates_fn.end();
int i = 0;
for ( ; templ_it != templ_it_end; ++templ_it)
{
tps[template_id][i++].read(*templ_it);
}
}
class_templates.insert(v);
return class_id;
}
void Detector::writeClass(const std::string& class_id, FileStorage& fs) const
{
TemplatesMap::const_iterator it = class_templates.find(class_id);
CV_Assert(it != class_templates.end());
const std::vector<TemplatePyramid>& tps = it->second;
fs << "class_id" << it->first;
fs << "modalities" << "[:";
for (size_t i = 0; i < modalities.size(); ++i)
fs << modalities[i]->name();
fs << "]"; // modalities
fs << "pyramid_levels" << pyramid_levels;
fs << "template_pyramids" << "[";
for (size_t i = 0; i < tps.size(); ++i)
{
const TemplatePyramid& tp = tps[i];
fs << "{";
fs << "template_id" << int(i); //TODO is this cast correct? won't be good if rolls over...
fs << "templates" << "[";
for (size_t j = 0; j < tp.size(); ++j)
{
fs << "{";
tp[j].write(fs);
fs << "}"; // current template
}
fs << "]"; // templates
fs << "}"; // current pyramid
}
fs << "]"; // pyramids
}
void Detector::readClasses(const std::vector<std::string>& class_ids,
const std::string& format)
{
for (size_t i = 0; i < class_ids.size(); ++i)
{
const std::string& class_id = class_ids[i];
std::string filename = cv::format(format.c_str(), class_id.c_str());
FileStorage fs(filename, FileStorage::READ);
readClass(fs.root());
}
}
void Detector::writeClasses(const std::string& format) const
{
TemplatesMap::const_iterator it = class_templates.begin(), it_end = class_templates.end();
for ( ; it != it_end; ++it)
{
const std::string& class_id = it->first;
std::string filename = cv::format(format.c_str(), class_id.c_str());
FileStorage fs(filename, FileStorage::WRITE);
writeClass(class_id, fs);
}
}
static const int T_DEFAULTS[] = {5, 8};
Ptr<Detector> getDefaultLINE()
{
std::vector< Ptr<Modality> > modalities;
modalities.push_back(new ColorGradient);
return new Detector(modalities, std::vector<int>(T_DEFAULTS, T_DEFAULTS + 2));
}
Ptr<Detector> getDefaultLINEMOD()
{
std::vector< Ptr<Modality> > modalities;
modalities.push_back(new ColorGradient);
modalities.push_back(new DepthNormal);
return new Detector(modalities, std::vector<int>(T_DEFAULTS, T_DEFAULTS + 2));
}
} // namespace linemod
} // namespace cv