opencv/3rdparty/openexr/Imath/ImathSphere.h
2012-10-17 15:57:49 +04:00

178 lines
4.6 KiB
C++

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#ifndef INCLUDED_IMATHSPHERE_H
#define INCLUDED_IMATHSPHERE_H
//-------------------------------------
//
// A 3D sphere class template
//
//-------------------------------------
#include "ImathVec.h"
#include "ImathBox.h"
#include "ImathLine.h"
namespace Imath {
template <class T>
class Sphere3
{
public:
Vec3<T> center;
T radius;
//---------------
// Constructors
//---------------
Sphere3() : center(0,0,0), radius(0) {}
Sphere3(const Vec3<T> &c, T r) : center(c), radius(r) {}
//-------------------------------------------------------------------
// Utilities:
//
// s.circumscribe(b) sets center and radius of sphere s
// so that the s tightly encloses box b.
//
// s.intersectT (l, t) If sphere s and line l intersect, then
// intersectT() computes the smallest t,
// t >= 0, so that l(t) is a point on the
// sphere. intersectT() then returns true.
//
// If s and l do not intersect, intersectT()
// returns false.
//
// s.intersect (l, i) If sphere s and line l intersect, then
// intersect() calls s.intersectT(l,t) and
// computes i = l(t).
//
// If s and l do not intersect, intersect()
// returns false.
//
//-------------------------------------------------------------------
void circumscribe(const Box<Vec3<T> > &box);
bool intersect(const Line3<T> &l, Vec3<T> &intersection) const;
bool intersectT(const Line3<T> &l, T &t) const;
};
//--------------------
// Convenient typedefs
//--------------------
typedef Sphere3<float> Sphere3f;
typedef Sphere3<double> Sphere3d;
//---------------
// Implementation
//---------------
template <class T>
void Sphere3<T>::circumscribe(const Box<Vec3<T> > &box)
{
center = T(0.5) * (box.min + box.max);
radius = (box.max - center).length();
}
template <class T>
bool Sphere3<T>::intersectT(const Line3<T> &line, T &t) const
{
bool doesIntersect = true;
Vec3<T> v = line.pos - center;
T B = T(2.0) * (line.dir ^ v);
T C = (v ^ v) - (radius * radius);
// compute discriminant
// if negative, there is no intersection
T discr = B*B - T(4.0)*C;
if (discr < 0.0)
{
// line and Sphere3 do not intersect
doesIntersect = false;
}
else
{
// t0: (-B - sqrt(B^2 - 4AC)) / 2A (A = 1)
T sqroot = Math<T>::sqrt(discr);
t = (-B - sqroot) * T(0.5);
if (t < 0.0)
{
// no intersection, try t1: (-B + sqrt(B^2 - 4AC)) / 2A (A = 1)
t = (-B + sqroot) * T(0.5);
}
if (t < 0.0)
doesIntersect = false;
}
return doesIntersect;
}
template <class T>
bool Sphere3<T>::intersect(const Line3<T> &line, Vec3<T> &intersection) const
{
T t;
if (intersectT (line, t))
{
intersection = line(t);
return true;
}
else
{
return false;
}
}
} //namespace Imath
#endif