opencv/samples/dnn/siamrpnpp.py
2020-10-19 21:42:04 +00:00

398 lines
16 KiB
Python

import argparse
import cv2 as cv
import numpy as np
import os
"""
Link to original paper : https://arxiv.org/abs/1812.11703
Link to original repo : https://github.com/STVIR/pysot
You can download the pre-trained weights of the Tracker Model from https://drive.google.com/file/d/11bwgPFVkps9AH2NOD1zBDdpF_tQghAB-/view?usp=sharing
You can download the target net (target branch of SiamRPN++) from https://drive.google.com/file/d/1dw_Ne3UMcCnFsaD6xkZepwE4GEpqq7U_/view?usp=sharing
You can download the search net (search branch of SiamRPN++) from https://drive.google.com/file/d/1Lt4oE43ZSucJvze3Y-Z87CVDreO-Afwl/view?usp=sharing
You can download the head model (RPN Head) from https://drive.google.com/file/d/1zT1yu12mtj3JQEkkfKFJWiZ71fJ-dQTi/view?usp=sharing
"""
class ModelBuilder():
""" This class generates the SiamRPN++ Tracker Model by using Imported ONNX Nets
"""
def __init__(self, target_net, search_net, rpn_head):
super(ModelBuilder, self).__init__()
# Build the target branch
self.target_net = target_net
# Build the search branch
self.search_net = search_net
# Build RPN_Head
self.rpn_head = rpn_head
def template(self, z):
""" Takes the template of size (1, 1, 127, 127) as an input to generate kernel
"""
self.target_net.setInput(z)
outNames = self.target_net.getUnconnectedOutLayersNames()
self.zfs_1, self.zfs_2, self.zfs_3 = self.target_net.forward(outNames)
def track(self, x):
""" Takes the search of size (1, 1, 255, 255) as an input to generate classification score and bounding box regression
"""
self.search_net.setInput(x)
outNames = self.search_net.getUnconnectedOutLayersNames()
xfs_1, xfs_2, xfs_3 = self.search_net.forward(outNames)
self.rpn_head.setInput(np.stack([self.zfs_1, self.zfs_2, self.zfs_3]), 'input_1')
self.rpn_head.setInput(np.stack([xfs_1, xfs_2, xfs_3]), 'input_2')
outNames = self.rpn_head.getUnconnectedOutLayersNames()
cls, loc = self.rpn_head.forward(outNames)
return {'cls': cls, 'loc': loc}
class Anchors:
""" This class generate anchors.
"""
def __init__(self, stride, ratios, scales, image_center=0, size=0):
self.stride = stride
self.ratios = ratios
self.scales = scales
self.image_center = image_center
self.size = size
self.anchor_num = len(self.scales) * len(self.ratios)
self.anchors = self.generate_anchors()
def generate_anchors(self):
"""
generate anchors based on predefined configuration
"""
anchors = np.zeros((self.anchor_num, 4), dtype=np.float32)
size = self.stride**2
count = 0
for r in self.ratios:
ws = int(np.sqrt(size * 1. / r))
hs = int(ws * r)
for s in self.scales:
w = ws * s
h = hs * s
anchors[count][:] = [-w * 0.5, -h * 0.5, w * 0.5, h * 0.5][:]
count += 1
return anchors
class SiamRPNTracker:
def __init__(self, model):
super(SiamRPNTracker, self).__init__()
self.anchor_stride = 8
self.anchor_ratios = [0.33, 0.5, 1, 2, 3]
self.anchor_scales = [8]
self.track_base_size = 8
self.track_context_amount = 0.5
self.track_exemplar_size = 127
self.track_instance_size = 255
self.track_lr = 0.4
self.track_penalty_k = 0.04
self.track_window_influence = 0.44
self.score_size = (self.track_instance_size - self.track_exemplar_size) // \
self.anchor_stride + 1 + self.track_base_size
self.anchor_num = len(self.anchor_ratios) * len(self.anchor_scales)
hanning = np.hanning(self.score_size)
window = np.outer(hanning, hanning)
self.window = np.tile(window.flatten(), self.anchor_num)
self.anchors = self.generate_anchor(self.score_size)
self.model = model
def get_subwindow(self, im, pos, model_sz, original_sz, avg_chans):
"""
Args:
im: bgr based input image frame
pos: position of the center of the frame
model_sz: exemplar / target image size
s_z: original / search image size
avg_chans: channel average
Return:
im_patch: sub_windows for the given image input
"""
if isinstance(pos, float):
pos = [pos, pos]
sz = original_sz
im_h, im_w, im_d = im.shape
c = (original_sz + 1) / 2
cx, cy = pos
context_xmin = np.floor(cx - c + 0.5)
context_xmax = context_xmin + sz - 1
context_ymin = np.floor(cy - c + 0.5)
context_ymax = context_ymin + sz - 1
left_pad = int(max(0., -context_xmin))
top_pad = int(max(0., -context_ymin))
right_pad = int(max(0., context_xmax - im_w + 1))
bottom_pad = int(max(0., context_ymax - im_h + 1))
context_xmin += left_pad
context_xmax += left_pad
context_ymin += top_pad
context_ymax += top_pad
if any([top_pad, bottom_pad, left_pad, right_pad]):
size = (im_h + top_pad + bottom_pad, im_w + left_pad + right_pad, im_d)
te_im = np.zeros(size, np.uint8)
te_im[top_pad:top_pad + im_h, left_pad:left_pad + im_w, :] = im
if top_pad:
te_im[0:top_pad, left_pad:left_pad + im_w, :] = avg_chans
if bottom_pad:
te_im[im_h + top_pad:, left_pad:left_pad + im_w, :] = avg_chans
if left_pad:
te_im[:, 0:left_pad, :] = avg_chans
if right_pad:
te_im[:, im_w + left_pad:, :] = avg_chans
im_patch = te_im[int(context_ymin):int(context_ymax + 1),
int(context_xmin):int(context_xmax + 1), :]
else:
im_patch = im[int(context_ymin):int(context_ymax + 1),
int(context_xmin):int(context_xmax + 1), :]
if not np.array_equal(model_sz, original_sz):
im_patch = cv.resize(im_patch, (model_sz, model_sz))
im_patch = im_patch.transpose(2, 0, 1)
im_patch = im_patch[np.newaxis, :, :, :]
im_patch = im_patch.astype(np.float32)
return im_patch
def generate_anchor(self, score_size):
"""
Args:
im: bgr based input image frame
pos: position of the center of the frame
model_sz: exemplar / target image size
s_z: original / search image size
avg_chans: channel average
Return:
anchor: anchors for pre-determined values of stride, ratio, and scale
"""
anchors = Anchors(self.anchor_stride, self.anchor_ratios, self.anchor_scales)
anchor = anchors.anchors
x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3]
anchor = np.stack([(x1 + x2) * 0.5, (y1 + y2) * 0.5, x2 - x1, y2 - y1], 1)
total_stride = anchors.stride
anchor_num = anchors.anchor_num
anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
ori = - (score_size // 2) * total_stride
xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
[ori + total_stride * dy for dy in range(score_size)])
xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
np.tile(yy.flatten(), (anchor_num, 1)).flatten()
anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
return anchor
def _convert_bbox(self, delta, anchor):
"""
Args:
delta: localisation
anchor: anchor of pre-determined anchor size
Return:
delta: prediction of bounding box
"""
delta_transpose = np.transpose(delta, (1, 2, 3, 0))
delta_contig = np.ascontiguousarray(delta_transpose)
delta = delta_contig.reshape(4, -1)
delta[0, :] = delta[0, :] * anchor[:, 2] + anchor[:, 0]
delta[1, :] = delta[1, :] * anchor[:, 3] + anchor[:, 1]
delta[2, :] = np.exp(delta[2, :]) * anchor[:, 2]
delta[3, :] = np.exp(delta[3, :]) * anchor[:, 3]
return delta
def _softmax(self, x):
"""
Softmax in the direction of the depth of the layer
"""
x = x.astype(dtype=np.float32)
x_max = x.max(axis=1)[:, np.newaxis]
e_x = np.exp(x-x_max)
div = np.sum(e_x, axis=1)[:, np.newaxis]
y = e_x / div
return y
def _convert_score(self, score):
"""
Args:
cls: score
Return:
cls: score for cls
"""
score_transpose = np.transpose(score, (1, 2, 3, 0))
score_con = np.ascontiguousarray(score_transpose)
score_view = score_con.reshape(2, -1)
score = np.transpose(score_view, (1, 0))
score = self._softmax(score)
return score[:,1]
def _bbox_clip(self, cx, cy, width, height, boundary):
"""
Adjusting the bounding box
"""
bbox_h, bbox_w = boundary
cx = max(0, min(cx, bbox_w))
cy = max(0, min(cy, bbox_h))
width = max(10, min(width, bbox_w))
height = max(10, min(height, bbox_h))
return cx, cy, width, height
def init(self, img, bbox):
"""
Args:
img(np.ndarray): bgr based input image frame
bbox: (x, y, w, h): bounding box
"""
x, y, w, h = bbox
self.center_pos = np.array([x + (w - 1) / 2, y + (h - 1) / 2])
self.h = h
self.w = w
w_z = self.w + self.track_context_amount * np.add(h, w)
h_z = self.h + self.track_context_amount * np.add(h, w)
s_z = round(np.sqrt(w_z * h_z))
self.channel_average = np.mean(img, axis=(0, 1))
z_crop = self.get_subwindow(img, self.center_pos, self.track_exemplar_size, s_z, self.channel_average)
self.model.template(z_crop)
def track(self, img):
"""
Args:
img(np.ndarray): BGR image
Return:
bbox(list):[x, y, width, height]
"""
w_z = self.w + self.track_context_amount * np.add(self.w, self.h)
h_z = self.h + self.track_context_amount * np.add(self.w, self.h)
s_z = np.sqrt(w_z * h_z)
scale_z = self.track_exemplar_size / s_z
s_x = s_z * (self.track_instance_size / self.track_exemplar_size)
x_crop = self.get_subwindow(img, self.center_pos, self.track_instance_size, round(s_x), self.channel_average)
outputs = self.model.track(x_crop)
score = self._convert_score(outputs['cls'])
pred_bbox = self._convert_bbox(outputs['loc'], self.anchors)
def change(r):
return np.maximum(r, 1. / r)
def sz(w, h):
pad = (w + h) * 0.5
return np.sqrt((w + pad) * (h + pad))
# scale penalty
s_c = change(sz(pred_bbox[2, :], pred_bbox[3, :]) /
(sz(self.w * scale_z, self.h * scale_z)))
# aspect ratio penalty
r_c = change((self.w / self.h) /
(pred_bbox[2, :] / pred_bbox[3, :]))
penalty = np.exp(-(r_c * s_c - 1) * self.track_penalty_k)
pscore = penalty * score
# window penalty
pscore = pscore * (1 - self.track_window_influence) + \
self.window * self.track_window_influence
best_idx = np.argmax(pscore)
bbox = pred_bbox[:, best_idx] / scale_z
lr = penalty[best_idx] * score[best_idx] * self.track_lr
cpx, cpy = self.center_pos
x,y,w,h = bbox
cx = x + cpx
cy = y + cpy
# smooth bbox
width = self.w * (1 - lr) + w * lr
height = self.h * (1 - lr) + h * lr
# clip boundary
cx, cy, width, height = self._bbox_clip(cx, cy, width, height, img.shape[:2])
# udpate state
self.center_pos = np.array([cx, cy])
self.w = width
self.h = height
bbox = [cx - width / 2, cy - height / 2, width, height]
best_score = score[best_idx]
return {'bbox': bbox, 'best_score': best_score}
def get_frames(video_name):
"""
Args:
Path to input video frame
Return:
Frame
"""
cap = cv.VideoCapture(video_name if video_name else 0)
while True:
ret, frame = cap.read()
if ret:
yield frame
else:
break
def main():
""" Sample SiamRPN Tracker
"""
# Computation backends supported by layers
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
# Target Devices for computation
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
parser = argparse.ArgumentParser(description='Use this script to run SiamRPN++ Visual Tracker',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_video', type=str, help='Path to input video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--target_net', type=str, default='target_net.onnx', help='Path to part of SiamRPN++ ran on target frame.')
parser.add_argument('--search_net', type=str, default='search_net.onnx', help='Path to part of SiamRPN++ ran on search frame.')
parser.add_argument('--rpn_head', type=str, default='rpn_head.onnx', help='Path to RPN Head ONNX model.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help='Select a computation backend: '
"%d: automatically (by default) "
"%d: Halide"
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit)"
"%d: OpenCV Implementation" % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help='Select a target device: '
"%d: CPU target (by default)"
"%d: OpenCL"
"%d: OpenCL FP16"
"%d: Myriad" % targets)
args, _ = parser.parse_known_args()
if args.input_video and not os.path.isfile(args.input_video):
raise OSError("Input video file does not exist")
if not os.path.isfile(args.target_net):
raise OSError("Target Net does not exist")
if not os.path.isfile(args.search_net):
raise OSError("Search Net does not exist")
if not os.path.isfile(args.rpn_head):
raise OSError("RPN Head Net does not exist")
#Load the Networks
target_net = cv.dnn.readNetFromONNX(args.target_net)
target_net.setPreferableBackend(args.backend)
target_net.setPreferableTarget(args.target)
search_net = cv.dnn.readNetFromONNX(args.search_net)
search_net.setPreferableBackend(args.backend)
search_net.setPreferableTarget(args.target)
rpn_head = cv.dnn.readNetFromONNX(args.rpn_head)
rpn_head.setPreferableBackend(args.backend)
rpn_head.setPreferableTarget(args.target)
model = ModelBuilder(target_net, search_net, rpn_head)
tracker = SiamRPNTracker(model)
first_frame = True
cv.namedWindow('SiamRPN++ Tracker', cv.WINDOW_AUTOSIZE)
for frame in get_frames(args.input_video):
if first_frame:
try:
init_rect = cv.selectROI('SiamRPN++ Tracker', frame, False, False)
except:
exit()
tracker.init(frame, init_rect)
first_frame = False
else:
outputs = tracker.track(frame)
bbox = list(map(int, outputs['bbox']))
x,y,w,h = bbox
cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3)
cv.imshow('SiamRPN++ Tracker', frame)
key = cv.waitKey(1)
if key == ord("q"):
break
if __name__ == '__main__':
main()